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Abstract.  This technical report presents a geometric approach on the formal
description of ordering on curves through space. Curves are usually considered
as topological mappings from parameter sets to space and not described in a
geometric framework. In contrast, we introduce oriented curves in an axiomatic
framework as geometric entities on the same level as points and straight lines.
This account does not require any numerical information and therefore enables
a qualitative characterization of oriented curves. Oriented curves can for
instance be used to represent trajectories of moving objects. They are basically
atemporal and therefore allow temporal as well as non-temporal interpretations.
Since oriented curves need not to be straight, they provide a generalized notion
of direction. This report contains the formal part of this enterprise including the
axioms, definitions, theorems and proofs. The general framework and an
application is described by Eschenbach, Habel & Kulik (1999).

1 Introduction

The framework of ordering geometry gives a formal account of the spatial relation of
betweenness (cf. Hilbert 1902, Huntington & Kline 1917, Huntington 1924,
Eschenbach et al. 1998). Traditionally, the embedding of betweenness in non-linear
spaces is based on collinearity and straightness. But betweenness can also be used
relative to other kinds of linear structures, such as paths that are not straight but bent
or generally curved (cf. Habel 1990). In this report we provide a formal geometric
account of ordering on linear structures that can be embedded in more complex
(spatial) structures. Thereby present the formal background of the idea that every
linear structure can be oriented in exactly two ways by introducing the geometric
descriptions of oriented curves in the framework of ordering geometry.
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Oriented curves can be considered as a geometric device generalizing polygonal
curves since their parts do not have to be straight segments. Therefore, they can rep-
resent a variety of entities that are both linear (i.e., contain no cycles and do not
branch) and directed (i.e., distinguish between start and end). Applications are given
by planning tasks in transportation systems (like rail connections and air routes),
traffic directing systems and more generally in qualitative descriptions of trajectories
of moving objects. A description of applying oriented curves as geometric
representations of simple trajectories of objects moving through space can be found in
Eschenbach, Habel & Kulik (1999). The formal description below provides the proofs
for the theorems stated this work.

In another paper (Eschenbach et al. 1998), we introduced a geometric description
of shape curves a the basis of describing the shape of objects and object parts based
on their outline. This description provides the means for distinguishing between
straight and bent parts of curves, and between bents and kinks as direction changes in
curves. Our intention has been to enrich this framework with the notion of oriented
curves based on shape curves. However, the spatial embedding of the curves, i.e.,
their shape, is irrelevant for the question of ordering and orientation on the curves.
Therefore, we refrain from presenting the whole geometric framework and restrict
ourselves to describe curves and oriented curves. Nevertheless, one intended
specialization for the curves described here are the shape curves of Eschenbach et al.
(1998), which provide a general account to characterize essential aspects of shape
based on features of the object’s boundary.

To extend the classical ordering geometry with oriented curves we employ the
axiomatic method. An axiomatic system constitutes a system of constraints and
describes the spatial properties of basic terms like ‘point’ and ‘curve’ through axioms.
The axioms determine the relations between the basic terms. An axiomatic specifica-
tion of spatial relations has at least two advantages. It provides an exact characteriza-
tion of the structure of a spatial relation and the systems can be compared concerning
their assumptions about the underlying spatial structure. Our description does neither
employ any metrical information nor any conception of time measurement. Since all
further statements about the spatial properties of curves are derived from the axioms,
the theory can also be used as a test-bed for automatic theorem provers.

In contrast to this geometric account, traditional approaches of mathematics and
physics assume that linear structures in general are mappings from a prototypical
linearly ordered set to the embedding structure. Since we aim at identifying general
characteristics of these structures, we develop a description of curves that does not
make any particular assumptions about the properties of curves, that is to say, whether
they are smoothly bent, have vertices, are rectifiable, etc. The main requirement is
that they are linear in the sense that they can be supplied with a total ordering
structure.

The plan of this report is the following. We first present the characterization of
curves and record their basic properties concerning the relation of incidence between
points and curves and the sub-curve relation between curves. In the next step we show
how betweenness can be defined on curves. The main idea is that a point P is between
two other points on a curve if there is a sub-curve that connects the two points and has



3

point P as an inner point Finally, we introduce oriented curves such that every open
curve corresponds to two oriented curves that order the points on the curve in opposite
manner. Thus, every curve can be oriented in exactly two ways and a ordered pair of
points on it supplies a direction on a curve. Oriented curves constitute a more general
way than oriented straight lines to describe directions in space.

2 Simple Curves

As the formal framework we assume many sorted predicate logic. The geometric
structure introduces three types of entities and two primitive relations. The entities are
points (denoted by P, Q, P', P1, …), curves (c, c1, …), and oriented curves (o, o1, …).
The primitive relations are the binary relation of incidence (denoted by ι) and the
ternary relation of precedence  with respect to oriented curves (p).

2.1 Points on Curves

Definition 2.1 (Sub-curve)
A curve c' is part of another curve c or a sub-curve of c (in symbols c' á c), if all
points of c' are incident with c:

c' á c ⇔def ∀P [P ι c' ⇒ P ι c]

Definition 2.2 (Endpoint, Inner Point)
An endpoint of a curve is on the curve and of any two curve parts that include it one is
part of the other. An inner point of a curve is on the curve and not an endpoint:

ept(P, c) ⇔def P ι c ∧ ∀c1, c2 [c1 á c ∧ c2 á c ∧ P ι c1 ∧ P ι c2 ⇒
(c1 á c2 ∨ c2 á c1)]

ipt(P, c) ⇔def P ι c ∧ ¬ept(P, c)

Remark.  A logically equivalent variant uses the definition of an inner point as basic
notion and defines the endpoint on this basis. A point is an inner point of a curve, if
there are two sub-curves which include the point and none of the sub-curves is part of
the other.

ipt(P, c) ⇔ ∃c1, c2 [c1 á c ∧ c2 á c ∧ P ι c1 ∧ P ι c2 ∧ ¬c1 á c2 ∧ ¬c2 á c1]

ept(P, c) ⇔ P ι c ∧ ¬ ipt(P, c)

Definition 2.3 (Meeting at a Point, Sum)
Two curves c, c' meet at endpoint P, symbolized by meet(P, c, c'), if P is a common
point and all their common points are endpoints:

meet(P, c, c') ⇔def P ι c ∧ P ι c' ∧ ∀Q [Q ι c ∧ Q ι c' ⇒ ept(Q, c) ∧ ept(Q, c')]

Remark.  This definition allows two curves to meet at both ends. In particular, if two
curves meet at P then P is an endpoint of both curves and the curves cannot be
identical (cf. (C9) and (C3)).
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A curve c that has exactly the points of curves c1 and c2 (see axiom (C9)) is called
their sum c1 � c2:

c = c1 � c2 ⇔def ∀Q [Q ι c ⇔ (Q ι c1 ∨ Q ι c2)]

Remark.  The operation sum (�) is only partially defined: Two curves need not have a
curve as their sum since curves are connected and do not branch. Therefore, e.g.,
curves that have no point in common do not form a sum. (cf. (C8))

Definition 2.4 (Closed Curve, Open Curve)
If a curve c does not have an endpoint, then we call the curve closed (in symbols:
cl(c)). Otherwise we call the curve open and denote it by op(c):

cl(c) ⇔def ¬∃P [ept(P, c)]

op(c) ⇔def ∃P [ept(P, c)]

2.2 Axioms for the Simple Curve Geometry

On this basis we can give the axioms for curves. The curves we define here are
strictly linear in that they do not include internal cycles and do not branch. More pre-
cisely, according to (C1) every proper sub-curve of a given curve is open, and if three
sub-curves of a given curve have one endpoint in common, then one of the three sub-
curves is included in one of the others (C2).
(C1) ∀c ∀c' [c' á c ∧ c' ≠ c ⇒ op(c')]

(C2) ∀c ∀c1 ∀c2 ∀c3 [c1 á c ∧ c2 á c ∧ c3 á c ∧
∃P [ept(P, c1) ∧ ept(P, c2) ∧ ept(P, c3)] ⇒
c2 á c3 ∨ c3 á c2 ∨ c1 á c2 ∨ c2 á c1 ∨ c1 á c3 ∨ c3 á c1]

Every curve has at least one inner point, i.e. a point which is not an endpoint of this
curve (C3). The axiom (C4) states that every inner point P of a curve divides the
curve into two sub-curves meeting at P.

(C3) ∀c ∃P [ipt(P, c)]

(C4) ∀c ∀P [ipt(P, c) ⇒ ∃c1 ∃c2 [meet(P, c1, c2) ∧ c = c1 � c2]]

Curves have at most two endpoints (C5) and, if a curve has one endpoint, then it has
another one (C6). On the other hand, if two curves meet and constitute a closed curve,
then they meet at all their endpoints (C7).

(C5) ∀c ∀P ∀Q ∀R [ept(P, c) ∧ ept(Q, c) ∧ ept(R, c) ⇒ (P = Q ∨ P = R ∨ Q = R)]

(C6) ∀c ∀P [ept(P, c) ⇒ ∃Q [ept(Q, c) ∧ P ≠ Q]]

(C7) ∀c ∀c1 ∀c2 ∀P [cl(c) ∧ meet(P, c1, c2) ∧ c = c1 � c2 ⇒
 ∀Q [ept(Q, c1) ⇒ meet(Q, c1, c2)]]

If two curves meet at one endpoint, then there is a curve that has exactly the points of
the two given curves (C8). Curves differ in the points they are incident with (C9).
Therefore, curves can be represented as sets of points, although we do not employ
such a representation.

(C8) ∀c1 ∀c2 [∃P [meet(P, c1, c2)] ⇒ ∃c [c = c1 � c2]]

(C9) ∀c ∀c' [∀P [P ι c ⇔ P ι c'] ⇒ c = c']
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2.3 Basic Consequences of the Axioms of the Curve Geometry

We note some consequences of these axioms.

Theorem 2.5
The relation sub-curve (á) is an order relation.

Proof.  The reflexivity and the transitivity are obvious, and the antisymmetry follows
from (C9). √

The next Corollary says that the sum is monotone. We omit the simple proofs.

Corollary 2.6
(1) ∀c1∀c2∀c3∀P [c2 á c3 ∧ meet(P, c1, c2) ∧ meet(P, c1, c3) ⇒ c1 � c2 á c1 � c3]

(2) ∀c1∀c2∀c3∀P [c1 á c3 ∧ c2 á c3 ∧ meet(P, c1, c2) ⇒ c1 � c2 á c3]

We record two basic facts about open curves. Every open curve has at least two
endpoints, and every sub-curve of an open curve is open.

Theorem 2.7
(1) ∀c [op(c) ⇒ ∃P ∃Q [P ≠ Q ∧ ept(P, c) ∧ ept(Q, c)]]

(2) ∀c ∀c' [op(c) ∧ c' á c ⇒ op(c')]

Proof of (1).  The statement is an immediate consequence of the definition of an open
curve and of axiom (C6). √

Remark 2.8.  Considering (1) and axiom (C5), we obtain that every open curve has
exactly two endpoints.

Proof of (2).  If c' = c then the statement is trivial. If c' ≠ c then axiom (C1) yields
op(c'). √

If one curve is part of another curve then they cannot meet.

Corollary 2.9
∀c1 ∀c2 [c1 á c2 ⇒ ¬∃P [meet(P, c1, c2)]]

Proof.  Considering axiom (C3) we know that there is a point Q being incident with c1

and c2 without being an endpoint of c1. Therefore meet(P, c1, c2) does not hold. √

In the next step we record a simple but important property of endpoints: If an
endpoint of a given curve lies on a sub-curve then it is also an endpoint of this sub-
curve.

Theorem 2.10
∀c ∀c' ∀P [c' á c ∧ ept(P, c) ∧ P ι c' ⇒ ept(P, c')]

Proof.  Let c1, c2 be two curves with c1 á c', c2 á c', P ι c1 and P ι c2. Since c' á c
holds, c1 á c and c2 á c follow from Theorem 2.5. From ept(P, c) we get via the
definition of ept c1 á c2 or c2 á c1. Applying the definition again, we derive ept(P, c'). √

A simple transformation of Theorem 2.10 yields that inner points of a sub-curve of
any curve c are inner points of c.

Corollary 2.11
∀c ∀P [∃c' [c' á c ∧ ipt(P, c')] ⇒ ipt(P, c)]
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Similarly, Theorem 2.10 yields that if a point P is a meeting point of two curves and
lies on a sub-curve of one of the two curves then P is also meeting point of the sub-
curve and the other curve.

Corollary 2.12
∀c1 ∀c2 ∀c' ∀P [c2 á c1 ∧ P ι c2 ∧ meet(P, c1, c') ⇒ meet(P, c2, c')]

The next theorem states that two distinct points on an open curve uniquely determine
the sub-curve connecting these points.

Theorem 2.13
∀c ∀c1 ∀c2 [c1 á c ∧ c2 á c ∧ op(c) ∧ ∃P ∃Q [P ≠ Q ∧ ept(P, c1) ∧

ept(P, c2) ∧ ept(Q, c1) ∧ ept(Q, c2)] ⇒ c1 = c2]

Proof.  If c1, c2 and c have a common endpoint, then we call this point P and c also c3

and continue with step 2 of the proof. Otherwise, if both P and Q are inner points of c,
then we first construct a sub-curve of c, that has c1 and c2 as parts and P as an
endpoint.
Step 1.  If both P and Q are inner points of c, then c can be divided into sub-curves c3

and c4 that have one endpoint in P (C4) and another one in the endpoints of c,
respectively (Theorem 2.10). According to (C2) c1 and c2 are part of c3 or c4, or
contain one of these. If, say, c3 is in c1, then the other endpoint of c3 is in c1. But, since
it is also an endpoint of c, it must be an endpoint of c1 (Theorem 2.10) and hence (C5)
identical to Q contradicting the assumption that Q is not an endpoint. Therefore, c1

and c2 are part of c3 or c4. Moreover, they have to be part of the same sub-curve, either
c3 or c4, because, if they would lie on different sub-curves, Q would lie on c3 and c4

and using meet(P, c3, c4) yields that it is an endpoint of both curves and therefore of c,
which again contradicts the assumption. Let the partitioning curve that contains both
c1 and c2 be c3.
Step 2. P is an endpoint of c1, c2 and c3. By the definition of ept, we know that c1 must
be part of c2 or vice versa. Without loss of generality, we can assume c1 á c2. If c1 and
c2 are not identical there is a point R being incident with c2 that does not lie on c1

(C9). R cannot be an endpoint of c2 (C5). Therefore, we can divide c2 into two sub-
curves c5, c6 meeting in R (C4) and having P and Q, the endpoints of c2, as their
respective second endpoints (Theorem 2.10). Since c1 does not contain R, it can
contain neither c5 nor c6. But with P and Q being endpoints of c2 and lying on c1, c1

itself had to be part of both c5 and c6 (definition of ept). Since this contradicts
meet(R,Êc5, c6) (C3, definition of meet) a point like R cannot exist. Thus c1 = c2 has
been proved (C9) for the case that P and Q both are inner points of c. √

We record five simple consequences for the meet-relation. (1) If two curves meet and
their sum is open, then the only point they have in common is their meeting-point. (2)
If two open sub-curves of an open curve meet, then their sum is also open. (3) A
meeting point of two curves is not an endpoint of any curve that includes both as sub-
curves. (4) If two curves meet and their sum is open, then the endpoints of the two
curves that are not the meeting-point are also the endpoints of the sum of these curves.
(5) If two curves meet, than the endpoints of the sum are exactly those endpoints of
the two curves that are not meeting-points of them.
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Proposition 2.14.
(1) ∀c1 ∀c2 ∀P [meet(P, c1, c2) ∧ op(c1 � c2) ⇒

∀Q [Q ≠ P ⇒ ¬(Q ι c1 ∧ Q ι c2)]]

(2) ∀c ∀c1 ∀c2 ∀P [op(c) ∧ c1 á c ∧ c2 á c ∧ meet(P, c1, c2) ⇒ op(c1 � c2)]

(3) ∀c1 ∀c2 ∀P [meet(P, c1, c2) ∧ c1 á c ∧ c2 á c ⇒ ¬ept(P, c)]

(4) ∀c1 ∀c2 ∀P [meet(P, c1, c2) ∧ op(c1 � c2) ⇒
∃Q ∃R [P ≠ Q ∧ Q ≠ R ∧ P ≠ R ∧ ept(Q, c1 � c2) ∧
ept(Q, c1) ∧ ept(R, c1 � c2) ∧ ept(R, c2)]]

(5) ∀c1 ∀c2 [∃P [meet(P, c1, c2)] ⇒ ∀Q [ept(Q, c1 � c2) ⇔
(¬meet(Q, c1, c2) ∧ (ept(Q, c1) ∨ ept(Q, c2)))]]

Proof of (1).  According to the definition of the meet-relation only the endpoints of c1

and c2 can be incident with both curves c1 and c2. Since op(c1 � c2) there is an
endpoints R of c1 � c2. Because of Corollary 2.9 c1 and c2 are not in the sub-curve
relation and therefore R is not on both c1 and c2. If R is on c1, then it is an endpoint of
c1 (Theorem 2.10). The other endpoint of c1 is P and therefore (C5) this is the only
point common to both sub-curves. If R is on c2, the argument is the same. √

Proof of (2).  If c1 � c2 = c holds then we immediately get op(c1 � c2). If c1 � c2 ≠ c
holds then we obtain op(c1 � c2) by employing axiom (C1) and Corollary 2.6.2. √

Proof of (3).  If P is an endpoint of c then c1 and c2 fulfill c1 á c, c2 á c, P ι c1 and
P ι c2 and c1 á c2 or c2 á c1 holds. This contradicts Corollary 2.9 that neither c1 á c2

nor c2 á c1 holds. Therefore, P cannot be an endpoint of c. √

Proof of (4).  Since c1 � c2 is open, Theorem 2.7.1 shows that there are two points Q
and R with Q ≠ R, ept(Q, c1 � c2) and ept(R, c1 � c2). According to (3) ¬ept(P, c1 � c2)
holds, hence we have P ≠ Q and P ≠ R. Since both Q and R are on c1 � c2, we can
assume without loss of generality Q ι c1. Theorem 2.10 then yields ept(Q, c1). Now,
R ι c1 cannot hold, otherwise Theorem 2.10 would yield again ept(R, c1). As ept(P, c1)
holds, this would contradict axiom (C5). Therefore we have R ι c2. Applying Theorem
2.10 again we obtain ept(R, c2). √

Proof of (5).  ⇒: Let Q be endpoint of c1 � c2. Because of (3) Q is not a meeting-
point of c1 and c2. But Q is incident with one of them, and, because of Theorem 2.10
endpoint of that sub-curve.
⇐: Let Q be an endpoint of, say, c1. If Q is also incident with c2, then meet(Q, c1, c2)
holds and nothing has to be proved. If c1 � c2 is open, then it has two endpoints
(Theorem 2.7.1). Since both c1 and c2 have P as an endpoint and P is not one of the
endpoints of c1 � c2, c1 � c2 has one endpoint in common with c1, and this must be Q.
If c1 � c2 is closed, then all endpoints of c1 or c2 are meeting-points by Axiom (C7)
and the condition is fulfilled. √

The next theorem says that for any two points on a curve there is a sub-curve that
connects these two points, that is to say these points are the endpoints of the sub-
curve.
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Theorem 2.15
∀P ∀Q ∀c [P ≠ Q ∧ P ι c ∧ Q ι c ⇒ ∃c' [c' á c ∧ ept(P, c') ∧ ept(Q, c')]]

Proof.  If P and Q are the endpoints of c, the theorem is trivially true. If P is an inner
point of c, there are—according to (C4)—two sub-curves c1, c2 satisfying

meet(P, c1, c2) ∧ c = c1 � c2.

Q lies on c1 or on c2. Without loss of generality we can assume Q ι c2. If Q is an
endpoint of c, then it is endpoint of c2 as well (Theorem 2.10) and the theorem has
been proved. If Q is an inner point of c2, applying axiom (C4) to Q and c2 yields two
sub-curves c3 and c4 fulfilling

meet(Q, c3, c4) ∧ c2 = c3 � c4.

Since ept(P, c2), c3 á c2, c4 á c2 and Q ι (c3 � c4) hold, Theorem 2.10 yields ept(P, c3)
or ept(P, c4). Let the sub-curve P and Q are endpoint of be designated with c', then c'
satisfies all conditions of the theorem. √

For closed curves, we can find two such sub-curves that complement each other.

Theorem 2.16
∀c ∀P ∀Q [cl(c) ∧ P ι c ∧ Q ι c ∧ P ≠ Q ⇒

∃c1 ∃c2 [meet(P, c1, c2) ∧ meet(Q, c1, c2) ∧ c = c1 � c2]]

Proof.  If cl(c) then ¬ept(P, c) and according to (C4) there are curves c3 and c4, such
that meet(P, c3, c4) ∧ c = c3 � c4. Since Q ι c we have Q ι c3 or Q ι c4. Without loss of
generality we assume Q ι c4. If ept(Q, c4), then we are—because of (C7)—done with
c1 = c3, c2 = c4. Otherwise (C4) is applicable to c4, such that there are curves c5 and c6

with meet(Q, c5, c6) ∧ c4 = c5 � c6. P is on c5 or c6. Let it be c5. Then P and Q are the
two endpoints of c5 (Theorem 2.10). Let R be the endpoint of c4 that is different from
P. R is an endpoint of c3 (by (C7)) and of c6 (Theorem 2.10, (C5)). Therefore
meet(R,Êc3, c6) (Corollary 2.12) and we are done with c1 = c5, c2 = c3 � c6. ((C8) and
Proposition 2.14.5). √

Every open sub-curve of a closed curve can be complemented by another curve so
that their sum constitute the closed curve.

Theorem 2.17
∀c ∀c1 ∀P ∀Q [cl(c) ∧ c1 á c ∧ ept(P, c1) ∧ ept(Q, c1) ∧ P ≠ Q ⇒

∃c2 [meet(P, c1, c2) ∧ meet(Q, c1, c2) ∧ c = c1 � c2]]

Proof.  P ι c is easy to prove. If cl(c) then ¬ept(P, c) and according to Theorem 2.16
there are curves c3 and c4, such that meet(P, c3, c4) ∧ meet(Q, c3, c4) ∧ c = c3 � c4.
According to (C2) c1 is a sub-curve of c3 or c4 or has one of them as sub-curve.
Without loss of generality we assume c1 á c3 ∨ c3 á c1. Since á is reflexive and both
c1 and c3 are open, Theorem 2.13 yields c1 = c3. We are done with c2 = c4. √

Every proper sub-curve of an open curve that has a common endpoint with the open
curve can be complemented by another curve so that their sum constitute the open
curve.
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Theorem 2.18
∀c ∀c1 ∀P [op(c) ∧ c1 á c ∧ c1 ≠ c ∧ ept(P, c1) ∧ ept(P, c) ⇒

∃Q ∃c2 [P ≠ Q ∧ meet(Q, c1, c2) ∧ c = c1 � c2]]

Proof.  c1 is a proper sub-curve of c and hence open (axiom (C1)). The other uniquely
determined endpoint of c1 (Remark 2.8) is denoted by Q. Q is not endpoint of c,
otherwise Theorem 2.13 yields c1 = c contradictory to the assumption. Applying
axiom (C4) we know that there are two curves c' and c2 that satisfy meet(Q, c', c2) and
c = c' � c2. Since P ι c' � c2 holds we can assume without loss of generality P ι c'.
Considering ept(P, c) Theorem 2.10 yields ept(P, c') and because of ept(Q, c'), c' = c1

follows from Theorem 2.13. √

Theorem 2.18 can be intensified in the following way:

Corollary 2.19
∀c ∀c1 ∀P [c1 á c ∧ c1 ≠ c ∧ op(c) ∧ ept(P, c1) ∧ ept(P, c) ⇒

∃Q ∃R ∃c2 [meet(Q, c1, c2) ∧ c = c1 � c2 ∧
P ≠ Q ∧ Q ≠ R ∧ P ≠ R ∧ ept(R, c2) ∧ ept(R, c)]]

Proof.  Considering Theorem 2.18 we have to prove only that there is a point R
satisfying the above requirement. Regarding Remark 2.8 we know that there is
another uniquely determined endpoint of c. We call this point R. Therefore ept(R, c) as
well as P ≠ R holds. According to Proposition 2.14.3 Q is not an endpoint of c. Hence
we conclude Q ≠ R. Using Proposition 2.14.1 we get ¬(R ι c1) ⇒ R ι c2. Assuming
R ι c1 Theorem 2.10 yields ept(R, c1) and applying axiom (C9) we obtain c1 = c
contradictory to the assumption c1 ≠ c. Hence we get R ι c2. Applying Theorem 2.10
again ept(R, c2) follows. √

If two sub-curves of one curve have a common endpoint and include a sub-curve
starting at this endpoint, then one of the two sub-curves is included in the other.

Theorem 2.20
∀c1 ∀c2 [∃c3 ∃P [c3 á c1 ∧ c3 á c2 ∧ ept(P, c1) ∧ ept(P, c2) ∧ ept(P, c3)]

∧ ∃c [c1 á c ∧ c2 á c] ⇒ c1 á c2 ∨ c2 á c1]

Proof.  If c3 = c1 or c3 = c2 holds then the theorem is proved. Therefore we assume in
the following c3 ≠ c1 and c3 ≠ c2. Hence, we can apply Theorem 2.18 to c3 and c1 as
well as to c3 and c2, respectively. It follows that there is point Q distinct from P and
curves c'1 and c'2 satisfying meet(Q, c3, c'1) and c1 = c3 � c'1 as well as meet(Q, c3, c'2)
and c2 = c3 � c'2. Since c3 á c, c'1 á c and c'2 á c is fulfilled, axiom (C2) yields
c'1 á c'2 or c'2 á c'1. The monotony of the sum gives in agreement with Corollary 2.6
c3 � c'1 á c3 � c'2 or c3 � c'2 á c3 � c'1, that is to say c1 á c2 or c2 á c1. √

If two sub-curves of an open curve have a common endpoint and another point in
common, then one of the two sub-curves is included in the other. This weaker
statement is a direct consequence of the above theorem.

Corollary 2.21
∀c ∀c1 ∀c2 ∀P ∀Q [op(c') ∧ c1 á c ∧ c2 á c ∧ ept(P, c1) ∧ ept(P, c2) ∧

P ≠ Q ∧ Q ι c1 ∧ Q ι c2 ⇒ c1 á c2 ∨ c2 á c1]



10

Proof.  Since Q ι c1, P ι c1, Q ι c2, P ι c2 hold, there are due to Theorem 2.15 curves c3

and c4 with c3 á c1, c4 á c2, ept(P, c3), ept(Q, c3), ept(P, c4), ept(Q, c4). Because of
Theorem 2.5 c3 á c and c4 á c. And Theorem 2.13 yields c3 = c4. Theorem 2.20
proves the statement. √

If two sub-curves of a given open curve have a common endpoint then the sub-curves
meet or one is included in the other.

Theorem 2.22
∀c ∀c1 ∀c2 ∀P [ept(P, c1) ∧ ept(P, c2) ∧ c1 á c ∧ c2 á c ∧ op(c) ⇒

meet(P, c1, c2) ∨ c1 á c2 ∨ c2 á c1]

Proof.  If meet(P, c1, c2) holds then the theorem is proved. Therefore, we assume in the
following ¬meet(P, c1, c2). Considering the definition of the meet-relation we get from
ept(P, c1) and ept(P, c2) that there is a point Q satisfying Q ι c1 ∧ Q ι c2 ∧ ¬(ept(Q, c1)
∧ ept(Q, c2)). According to Theorem 2.15 there are two sub-curves c', c'' satisfying
c' á c1 ∧ ept(P, c') ∧ ept(Q, c') and c'' á c2 ∧ ept(P, c'') ∧ ept(Q, c''). Since c is open and
c' á c as well as c'' á c holds, Theorem 2.13 yields c' = c''. The application of
Theorem 2.20 to c', c1 and c2 shows c1 á c2 or c2 á c1 and completes the proof. √

An immediate consequence of Corollary 2.21 and Theorem 2.22 is the following
statement: If two sub-curves of an open curve meet at a point and this point is an
endpoint for another sub-curve then this sub-curve meets one of the former sub-curves
at this point.

Proposition 2.23
∀c ∀c1 ∀c2 ∀c3 ∀P [c1 á c ∧ c2 á c ∧ c3 á c ∧ meet(P, c1, c2) ∧ ept(P, c3) ∧ op(c)

⇒ meet(P, c1, c3) ∨ meet(P, c2, c3)]

Proof.  If the only points that are incident with both c1 and c3 are endpoints of c1, then
c1 is not a sub-curve of c3 and c3 is not a sub-curve of c1 (Axiom (C3) and Corollary
2.11). Theorem 2.22 then yields meet(P, c1, c3).

If on the other hand there is an inner point Q of c1 being incident with c3 then
Corollary 2.21 yields c1 á c3 ∨ c3 á c1. If c3 á c1 is satisfied then, by Corollary 2.12,
we get meet(P, c2, c3). If, on the other hand, c1 á c3, then Theorem 2.22 yields
meet(P,Êc2, c3) ∨ c2 á c3 ∨ c3 á c2 and we have to check whether the conditions c2 á c3

and c3 á c2 can hold. If c3 á c2 holds then we have c1 á c2, which contradicts
meet(P,Êc1, c2). If c2 á c3 holds then we have found two sub-curves of c3, namely c1

and c2, that fulfill meet(P, c1, c2) and this contradicts the assumption ept(P, c3)
(Proposition 2.14.3). Therefore meet(P, c2, c3) holds. √

We conclude this section with a theorem about closed curves. If two sub-curves have
two common endpoints then they are identical or their sum is the whole curve.

Theorem 2.24
∀c ∀c1 ∀c2 [∃P ∃Q [ept(P, c1) ∧ ept(Q, c1) ∧ ept(P, c2) ∧ ept(Q, c2) ∧

P ≠ Q] ∧ cl(c) ∧ c1 á c ∧ c2 á c ⇒ c1 = c2 ∨ c = c1 � c2]

Proof.  From Theorem 2.16 we know that there is a partitioning of c in sub-curves c1

and c2 such that meet(P, c1, c2) ∧ meet(Q, c1, c2) ∧ c = c1 � c2. We just have to prove
that any c3 with ept(P, c3) ∧ ept(Q, c3) ∧ c3 á c is identical to one of c1 and c2.
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From (C2) we get that c2 á c3 ∨ c3 á c2 ∨ c1 á c2 ∨ c2 á c1 ∨ c1 á c3 ∨ c3 á c1. Since
meet(Q, c1, c2) we get from Corollary 2.9 that c1 á c2 and c2 á c1 do not hold. Since the
three sub-curves are open and they have the same endpoints, we get by Theorem 2.13
that if any of them is a sub-curve of the other, then the two curves are identical. Thus,
we have c2 = c3 ∨ c1 = c3. √

3 Orderings on Simple Curves

3.1 The Definition of Betweenness

The main idea for the definition of betweenness on curves is the following: A point Q
is between two other points if there is a sub-curve that connects the two points and Q
is an inner point of this sub-curve.1

Definition 3.1 (Betweenness on Curves)
β1(c, P, Q, R) ⇔def P ≠ R ∧ ∃c' [c' á c ∧ ept(P, c') ∧ ept(R, c') ∧ ipt(Q, c')]

An alternative proposal consists of the idea that a point is between two other points
with respect to the curve if there are two sub-curves that connect the three points and
the point in question is the meeting-point of the two sub-curves.

Definition 3.2 (Betweenness on Curves)
β2(c, P, Q, R) ⇔def P ≠ Q ∧ P ≠ R ∧ Q ≠ R ∧ ∃c1 ∃c2 [meet(Q, c1, c2) ∧

c1 á c ∧ c2 á c ∧ ept(P, c1) ∧ ept(R, c2)]

In the framework proposed here, these definitions are equivalent:

Theorem 3.3
∀c ∀P ∀Q ∀R [β1(c, P, Q, R) ⇔ β2(c, P, Q, R)]

Proof.  On account of axiom (C4) β2(c, P, Q, R) follows from β1(c, P, Q, R). The
application of axiom (C8), Proposition 2.14.3 and 5 prove β1(c, P, Q, R) on the basis
of β2(c, P, Q, R). √

In the following we use both variants. A third alternative is suggested by axiom (C4).
It says that a point is between two points with respect to a curve, if it is the meeting
point of two sub-curves that partition the curve such that the other two points are on
different sub-curves:

Definition 3.4 (Betweenness on Curves)
β3(c, P, Q, R) ⇔def P ≠ Q ∧ P ≠ R ∧ Q ≠ R ∧

∃c1 ∃c2 [meet(Q, c1, c2) ∧ (c1 � c2 = c) ∧ P ι c1 ∧ R ι c2]

                                                                        
1 This definition of betweenness for points on curves is based on Theorem 2.15 that for two

given points there is always a sub-curve of this curve such that the two points are the
endpoints for the sub-curve.
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Theorem 3.5
∀c ∀P ∀Q ∀R [β2(c, P, Q, R) ⇔ β3(c, P, Q, R)]

Proof.  β2(c, P, Q, R) follows from β3(c, P, Q, R) and axiom (C4). The application of
axiom (C4) and (C8) prove β3(c, P, Q, R) on the basis of β2(c, P, Q, R). √

Since we need not distinguish between the variants of defining betweenness, we will
use the symbol β in the following.

A simple consequence is that every endpoint of an open curve is not between any
other point of this curve.

Theorem 3.6
∀c ∀P [op(c) ⇒ (ept(P, c) ⇔ P ι c ∧ ¬∃Q ∃R [β(c, Q, P, R)])]

Proof.  We show: if op(c) then ¬ept(P, c) ⇔ ¬(P ι c) ∨ ∃Q ∃R [β(c, Q, P, R)].
⇐: If ¬(P ι c) then ¬ept(P, c) follows trivially. If P ι c and if there are two points Q
and R fulfilling β(c, Q, P, R) the point P cannot be an endpoint because of Definition
3.1 and Corollary 2.11.
⇒: If ¬(P ι c) holds, there is nothing to prove. Therefore we can assume P ι c. Since
P is not an endpoint of c there are in accordance with axiom (C4) two curves c1 and c2

satisfying meet(P, c1, c2) and c = c1 � c2. c is open, thus there are exactly two
endpoints Q and R of c (cf. Remark 2.8). Proposition 2.14.3 shows P ≠ Q and P ≠ R.
Hence, Q, R, c1 and c2 fulfill the conditions of Definition 3.2. √

In contrast to open curves, we find that betweenness for closed curves is trivial, since
on closed curves every triple of points fulfills that one point is between the other two
points with respect to the curve. Thus, the development of oriented curves in the next
chapter is based on open curves only.

Theorem 3.7
∀c ∀P Q R [cl(c) ∧ P ≠ Q ∧ Q ≠ R ∧ P ≠ R ∧ P ι c ∧ Q ι c ∧ R ι c ⇒

β(c, P, Q, R)]

Proof.  Considering Theorem 2.16 we get that there are curves c1 and c2 fulfilling
meet(P, c1, c2) ∧ meet(R, c1, c2) ∧ c = c1 � c2. It follows from Q ι c that Q ι c1 or Q ι c2.
Either c1 or c2 comply with Definition 3.1. This proves the theorem. √

3.2 The properties of β

In this section we show that all basic properties of orderings on linear structures are
satisfied (cf. Huntington, 1924). We summarize the fundamental properties of
orderings on linear structures in the following theorem: Let c denote a curve and P, Q
and R points: (1) If Q is between P and R wrt. c, then P, Q and R are incident with c
and are pairwise distinct. (2) If Q is between P and R wrt. c, then Q is between R and
P wrt. c. (3) If c is open and Q is between P and R wrt. c, then P is not between Q and
R wrt. c. (4) If P, Q and R are distinct and on c then one of the points is between the
others wrt. c. Finally, (5) if  Q is between P and R wrt. c and Q' another point distinct
from Q and lying on c then Q is either between P and Q' or between Q' and R wrt. c.
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Theorem 3.8
(1) ∀c ∀P Q R [β(c, P, Q, R)

⇒ P ι c ∧ Q ι c ∧ R ι c ∧ P ≠ Q ∧ Q ≠ R ∧ P ≠ R]

(2) ∀c ∀P Q R [β(c, P, Q, R) ⇒ β(c, R, Q, P)]

(3) ∀c ∀P Q R [op(c) ∧ β(c, P, Q, R) ⇒ ¬β(c, Q, P, R)]

(4) ∀c ∀P Q R [P ι c ∧ Q ι c ∧ R ι c ∧ P ≠ Q ∧ Q ≠ R ∧ P ≠ R
⇒ β(c, P, Q, R) ∨ β(c, Q, P, R) ∨ β(c, P, R, Q)]

(5) ∀c ∀P Q R Q' [β(c, P, Q, R) ∧ Q' ι c ∧ Q ≠ Q'
⇒ (β(c, P, Q, Q') ∨ β(c, Q', Q, R))]

Proof of (1).  If β(c, P, Q, R), then P ≠ R (Definition 3.1) and there is a curve c'
satisfying c' á c ∧ ept(P, c') ∧ ept(R, c') ∧ ipt(Q, c'). It ensues from ¬ept(Q, c') that
PÊ≠ Q and Q ≠ R. From ept(P, c') and ept(R, c') we derive P ι c' and R ι c'.
Considering Q ι c' we have on account of c' á c finally P ι c, Q ι c and R ι c. √

Proof of (2).  The proof is trivial, since we can interchange the order of the conjuncts
in Definition 3.1. √

Proof of (3).  Since β(c, P, Q, R) there are (Definition 3.2) two curves c1 and c2 with

(c1 � c2 á c) ∧ ept(P, c1) ∧ ept(R, c2) ∧ meet(Q, c1, c2).

Let c3 be the sum of c1 and c2. Curve c3 is open because of Theorem 2.7.2. Applying
Proposition 2.14.4 we obtain ept(P, c3) and ept(R, c3). Let us assume that β(c, Q, P, R)
also holds. Then there are also two curves c'1 and c'3 with

(c'1 � c'3 á c) ∧ ept(Q, c'1) ∧ ept(R, c'3) ∧ meet(P, c'1, c'3).

Let c'2 be the sum of c'1 and c'3 which is open according to Theorem 2.7.2. Applying
Proposition 2.14.4 again we obtain ept(Q, c'2) and ept(R, c'2). Therefore we can apply
Theorem 2.13 and get

ept(P, c1) ∧ ept(P, c'1) ∧ ept(Q, c1) ∧ ept(Q, c'1) ⇒ c1 = c'1
ept(R, c2) ∧ ept(R, c'2) ∧ ept(Q, c2) ∧ ept(Q, c'2) ⇒ c2 = c'2
ept(P, c3) ∧ ept(P, c'3) ∧ ept(R, c3) ∧ ept(R, c'3) ⇒ c3 = c'3

Summarizing, we obtain c3 = c1 � c2 and c2 = c1 � c3, and therefore c3 á c2 and
c2 á c3. This leads to the conclusion c2 = c3. According to axiom (C5) it follows that
P = Q or Q = R or P = R contradictory to the assumption P ≠ Q, Q ≠ R, P ≠ R. Thus
we have ¬β(c, Q, P, R). √

Proof of (4).   Considering Theorem 3.7 we can assume that c is open. We will prove
that given the assumptions of the theorem and additionally supposing that neither
¬β(c, P, R, Q) nor ¬β(c, Q, P, R) holds, β(c, P, Q, R) follows. According to Theorem
2.15 there are three curves c1, c2 and c3 satisfying

c1 á c ∧ ept(P, c1) ∧ ept(Q, c1),
c2 á c ∧ ept(Q, c2) ∧ ept(R, c2),
c3 á c ∧ ept(P, c3) ∧ ept(R, c3).

Since we assume op(c) Theorem 2.22 yields due to ept(Q, c1) and ept(Q, c2)

meet(Q, c1, c2) ∨ c1 á c2 ∨ c2 á c1.



14

Assuming c1 á c2, then in particular P ι c2 holds. ¬ept(P, c2) follows since c2 has at
most two endpoints (C5). But then we would have found a curve—this is c2—with
ept(Q, c2), ept(R, c2) and ipt(P, c2). Therefore, Definition 3.1 is fulfilled for P, Q, R and
c2 contrary to the assumption ¬β(c, Q, P, R). Analogously, c2 á c1 cannot be valid,
otherwise ¬β(c, P, R, Q) would be violated. Hence meet(Q, c1, c2) follows and on
account of Proposition 2.14.3 ¬ept(P, c1 � c2) holds. Consequently, Definition 3.2 is
fulfilled. √

Proof of (5).  We distinguish two cases. First let c be closed. We know from
β(c, P, Q, R) that P, Q and R are on c and mutually distinct. Since P ≠ R holds, Q' ≠ P
or Q' ≠ R follows. In the first case we get β(c, P, Q, Q') from Q' ι c, Q ≠ Q' and
Theorem 3.7, in the second case we get β(c, Q', Q, R).

Now, let curve c be open. Since Q ≠ Q' holds, Theorem 2.15 says that there is
curve c3 á c with ept(Q', c3) and ept(Q, c3). On the other hand β(c, P, Q, R) is satisfied.
According to Definition 3.2, there are two curves c1, c2 with

(c1 � c2 á c) ∧ ept(P, c1) ∧ ept(R, c2) ∧ meet(Q, c1, c2).

Hence, all assumptions of Proposition 2.23 are fulfilled and we get meet(Q, c1, c3) or
meet(Q, c2, c3). In the first case Definition 3.2 is satisfied due to c1 � c3 á c, ept(P, c1)
and ept(Q', c3), and we obtain β(c, P, Q, Q'). In the second case we get β(c, Q', Q, R)
from ept(Q', c3), ept(R, c2) and c2 � c3 á c. √

If P, Q and R are points on an open curve c then Q is not between P and R wrt. c, iff P
is between R and Q wrt. c or R is between Q and P wrt. c or at least two of the points
are identical.

Corollary 3.9
∀c ∀P Q R [op(c) ∧ P ι c ∧ Q ι c ∧ R ι c ⇒

(¬β(c, P, Q, R) ⇔ β(c, R, P, Q) ∨ β(c, Q, R, P) ∨
R = Q ∨ R = P ∨ P = Q)]

Proof.  ⇒: is proved by Theorem 3.8.4 and Theorem 3.8.2. The other direction is
derived from Theorem 3.8.3, Theorem 3.8.4 and Theorem 3.8.1. √

4 Oriented Curves

The axioms for oriented curves and the precedence structure are closely related to the
axioms of ordering for oriented straight lines in Eschenbach & Kulik (1997). Oriented
curves constitute a more general basis than oriented straight lines to describe
directions in space. The description of oriented curves is given on the basis of a
primitive ternary relation of precedence that distinguishes the order of points on an
oriented curve and is compatible with the relation of betweenness as defined above.

A point is between two other points on an oriented curve iff one of them precedes
it and the other one is preceded by it:

Definition 4.1 (Betweenness on an Oriented Curve)
β(o, P, Q, R) ⇔def (p(o, P, Q) ∧ p(o, Q, R)) ∨ (p(o, R, Q) ∧ p(o, Q, P))
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A starting point of an oriented curve precedes any other point on it, and a finishing
point of an oriented curve is preceded by any other point on it.

Definition 4.2 (Starting Point, Finishing Point)
stpt(P, o) ⇔def P ι o ∧ ∀Q [P ≠ Q ∧ Q ι o ⇒ p(o, P, Q)]

fpt(P, o) ⇔def P ι o ∧ ∀Q [P ≠ Q ∧ Q ι o ⇒ p(o, Q, P)]

Remark.  It is possible to omit the requirement P ι o in both definitions, since it is
provable from the following Axiom (O1).

4.1 Axioms of Oriented Curves and Precedence

Points that are ordered by an oriented curve are incident with the curve (O1). Since
the basic spatial structure of the oriented curves shall correspond to the structure of
open curves, we require that every oriented curve coincides with an open curve in all
points (O2) and betweenness on an oriented curve is compatible with betweenness on
the underlying curve (O3). Additionally, every oriented curve has a starting point
(O4). For every open curve and two points on it there is an oriented curve that coin-
cides with the curve at all points and orders the two points (O5). Finally, oriented
curves are identical if they totally agree in the ordering of points (O6).

(O1) ∀o ∀P ∀Q [p(o, P, Q) ⇒ P ι o ∧ Q ι o]

(O2) ∀o ∃c [op(c) ∧ ∀P [P ι o ⇔ P ι c]]

(O3) ∀P ∀Q ∀R ∀o [β(o, P, Q, R) ⇔ ∃c [∀P [P ι o ⇔ P ι c] ∧ β(c, P, Q, R)]]

(O4) ∀o ∃P [stpt(P, o)]

(O5) ∀P ∀Q ∀c [op(c) ∧ P ≠ Q ∧ P ι c ∧ Q ι c ⇒
∃o[∀R [R ι o ⇔ R ι c] ∧ p(o, P, Q)]

(O6) ∀o1 ∀o2 [∀P ∀Q [p(o1, P, Q) ⇔ p(o2, P, Q)] ⇒ o1 = o2]

We will use the function uc to denote the underlying curve of an oriented curve.

Definition 4.3 (Underlying Curve)
c = uc(o) ⇔def ∀P [P ι o ⇔ P ι c]

Remark.  According to Axiom (O2) there is at least one open curve c for every
oriented curve o. Considering Axiom (C9) we obtain that c is uniquely determined.

4.2 Theorems

Precedence on oriented curves is irreflexive.

Theorem 4.4
∀o ∀P [¬p(o, P, P)]

Proof.  If p(o, P, P) then by β(o, P, P, P), contradicting Theorem 3.8.1 with
Definition 4.1. √

Precedence on oriented curves is asymmetric.
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Theorem 4.5
∀o ∀P ∀Q [p(o, P, Q) ⇒ ¬p(o, Q, P)]

Proof.  If p(o, P, Q) and p(o, Q, P) then by Definition 4.1 β(o, P, Q, P), contradicting
Theorem 3.8.1 with (O3). √

The starting point and the finishing point of an oriented curve are endpoints of the
underlying curve.

Theorem 4.6
(1) ∀o ∀P [stpt(P, o) ⇒ ept(P, uc(o))]

(2) ∀o ∀P [fpt(P, o) ⇒ ept(P, uc(o))]

Proof.  We just give the proof for (1) since the proof for (2) proceeds in the same
way. More precisely we prove for a point P and an oriented line o:

ipt(P, uc(o)) ⇒ ¬stpt(P, o).

According to Axiom (O2) uc(o) is open. Let P1 and P2 denote its endpoints. In
agreement with Definition 3.1 we have β(uc(o), P1, P, P2), by Axiom (O3) we get
β(o, P1, P, P2). According to Definition 4.1 this means p(o, P1, P) ∧ p(o, P, P2) or
p(o, P2, P) ∧ p(o, P, P1). Theorem 4.5 finally yields p(o, P1, P) or p(o, P2, P). This
contradicts stpt(P, o). √

The other way round, every endpoint of the underlying curve of an oriented curve is
either a starting point or finishing point of the oriented curve.

Theorem 4.7
∀o ∀P [ept(P, uc(o)) ⇒ stpt(P, o) ∨ fpt(P, o)]]

Proof. We assume ept(P, uc(o)) and ¬stpt(P, o) in order to show fpt(P, o). According to
Axiom (O4), o has a starting point, which we call Q. Q is also an endpoint of uc(o)
(Theorem 4.6). Let R be any point on o, different from P and Q. We just have to show
that p(o, R, P) holds. Since P and Q are endpoints of uc(o) we get by Theorem 3.6
¬β(uc(o), Q, P, R) and ¬β(uc(o), P, Q, R). Via Theorem 3.8.4 and Axiom (O3) we get
β(o, P, R, Q). This means (Definition 4.1) (p(o, P, R) ∧ p(o, R, Q)) ∨ (p(o, Q, R) ∧
p(o, R, P)). The first case is excluded because of stpt(Q, o). Thus, p(o, R, P) holds and
P is a finishing point of o. √

Every underlying curve of an oriented curve has exactly two endpoints. Since the
proof shows that an endpoint of the underlying curve which is not a starting point of
the oriented curve must be a finishing point of the oriented curve, one endpoint of the
underlying curve has to be the starting point (Axiom (O4)) and the other has to be the
finishing point of the oriented curve. Therefore we obtain:

Corollary 4.8
∀o ∃P [fpt(P, o)]

These prerequisites are sufficient to prove that every oriented curve orders all points
on it.

Theorem 4.9
∀o ∀P ∀Q [P ι o ∧ Q ι o ⇒ (p(o, P, Q) ∨ P = Q ∨ p(o, Q, P))]
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Proof.  Let us assume P ι o ∧ Q ι o  and P ≠ Q. If one of P or Q is starting point or
finishing point of o  then we also have p(o, P, Q) ∨ p(o, Q, P).
If P and Q are neither a starting point nor a finishing point thenÑin accordance with
Theorem 4.7—P and Q have to be inner points of the open curve uc(o). Let P1 and P2

be the endpoints of uc (o) (Theorem 2.7.1), such that stpt(P1, o) and fpt(P2, o). Theorem
3.6 yields β(uc(o), P1, P, P2). Since Q ι uc(o) we obtain using Theorem 3.8.5:

β(uc(o), P1, P, Q) ∨ β(uc(o), Q, P, P2).

Applying Axiom (O3) and Definition 4.1 we get

(p(o, P1, P) ∧ p(o, P, Q)) ∨ (p(o, Q, P) ∧ p(o, P, P1)) ∨
(p(o, Q, P) ∧ p(o, P, P2)) ∨ (p(o, P2, P) ∧ p(o, P, Q)).

Since P1 is a starting point of o and P2 is a finishing point of o we conclude using
Theorem 4.5 p(o, P, Q) ∨ p(o, Q, P). √

Every oriented curve has at most one starting point and one finishing point.

Corollary 4.10
(1) ∀o ∀P ∀Q [stpt(P, o) ∧ stpt(Q, o) ⇒ P = Q]

(2) ∀o ∀P ∀Q [fpt(P, o) ∧ fpt(Q, o) ⇒ P = Q]

Every oriented curve orders some points.

Theorem 4.11
∀o ∃P ∃Q [p(o, P, Q) ∧ P ≠ Q]

Proof.  The open curve uc(o) has because of Theorem 2.7.1 two points on it which are
ordered according to Theorem 4.9. √

Incidence on oriented curves can be defined in terms of precedence.

Theorem 4.12
∀o ∀P [P ι o ⇔ ∃Q [p(o, P, Q) ∨ p(o, Q, P)]]

Proof.  ⇐: is given by (O1).
⇒: By (O2) o coincides totally with an open curve, by Theorem 2.7.1 it has at least
one point Q different from P and by Theorem 4.9 P is related to this point by
precedence on o. √

If P precedes Q with respect to o, then any point R on o precedes Q or is preceded by
P.

Theorem 4.13
∀o ∀P ∀Q [p(o, P, Q) ⇒ ∀R [R ι o ⇒ (p(o, R, Q) ∨ p(o, P, R))]

Proof.  If R = P or R = Q, then there is nothing to prove. Otherwise, we get from
Theorem 4.9 that (p(o, R, Q) ∨ p(o, Q, R)) and (p(o, R, P) ∨ p(o, P, R)). We just have
to exclude the case that both p(o, Q, R) and p(o, R, P) hold. Assuming this we
conclude from p(o, P, Q) and by Definition 4.1 that β(o, R, P, Q) and β(o, P, Q, R).
Applying Axiom (O3) and Theorem 3.8.2 the last conjunction contradicts Theorem
3.8.3. √

Precedence on an oriented curve is a transitive relation.
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Theorem 4.14
∀o ∀P ∀Q ∀R [p(o, P, Q) ∧ p(o, Q, R) ⇒ p(o, P, R)]

Proof.  From p(o, P, Q) ∧ p(o, Q, R) we know by Definition 4.1 β(o, P, Q, R) and by
(O3) and Theorem 3.8.1 P ≠ R. From Theorem 4.9 we know p(o, P, R) ∨ p(o, R, P).
If p(o, R, P) then β(o, R, P, Q) by Definition 4.1, which contradicts Theorem 3.8.3
together with Theorem 3.8.2. √

Theorem 4.15
∀o ∀P ∀Q ∀R [β(o, P, Q, R) ⇒ (p(o, P, Q) ⇔ p(o, Q, R))]

Proof.  Definition 4.1, (O3) and Theorem 4.5. √

Corollary 4.16
∀P ∀Q ∀R ∀o [β(o, P, Q, R) ⇒ (p(o, P, Q) ⇔ p(o, P, R))]

Proof.  Theorem 4.15 and Theorem 4.14. √

Theorem 4.17
(1) ∀o ∀P ∀Q ∀S [p(o, P, Q) ∧ P ≠ S ∧ S ι o ⇒ (p(o, P, S) ⇔ ¬β(o, S, P, Q))]

(2) ∀o ∀P ∀Q ∀R ∀S [p(o, P, Q) ∧ R ≠ S ∧ S ι o ∧ β(o, R, P, Q) ⇒
(p(o, R, S) ⇔ ¬β(o, S, R, Q))]

(3) ∀o ∀P ∀Q ∀R ∀S [p(o, P, Q) ∧ P ≠ R ∧ ¬β(o, R, P, Q) ⇒
(p(o, R, S) ⇔ β(o, P, R, S))]

Proof of (1).  If p(o, P, Q) ∧ P ≠ S ∧ S ι o then p(o, P, S) ⇔ ¬p(o, S, P) by Theorem
4.9 and Theorem 4.5. p(o, S, P) ⇔ β(o, S, P, Q) can be shown by Theorem 4.15 and
Definition 4.1. √

Proof of (2).   If  p(o, P, Q) ∧ β(o, R, P, Q) then by Corollary 4.16 p(o, R, Q). Hence
we can apply (1)—by substituting P with R in (1). √

Proof of (3).   If p(o, P, Q) ∧ P ≠ R ∧ ¬β(o, R, P, Q) we get from (O3) and Theorem
4.5 ¬p(o, R, P). Hence we apply (1)—substitute P with R and Q with P—and get

p(o, R, S) ⇔ β(o, S, R, P).

Definition 4.1, Axiom (O3) and Theorem 3.8.2 yield the statement. √

Corollary 4.18 and Theorem 4.19 show how the ordering of any pair of points R and S
on an oriented line o can be determined on the basis of a given pair of points P and Q
using betweenness and incidence only. Thus, the underlying curve and one pair of
points are sufficient for the ordering of the points on the oriented curve.

Corollary 4.18
∀o ∀P ∀Q [p(o, P, Q) ⇒ ∀R ∀S [p(o, R, S) ⇔

((S ι o ∧ (β(o, R, P, Q) ∨ P = R) ∧ R ≠ S ∧ ¬β(o, S, R, Q))
∨ (β(o, P, R, S) ∧ ¬β(o, Q, P, R)))]]
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Theorem 4.19
∀o ∀P ∀Q [p(o, P, Q) ⇒ ∀R ∀S [p(o, R, S) ⇔

(β(o, R, P, Q) ∧ (β(o, R, S, Q) ∨ β(o, R, Q, S) ∨ Q = S)) ∨
(β(o, P, R, S) ∧ (β(o, P, R, Q) ∨ β(o, P, Q, R) ∨ Q = R)) ∨
(P = R ∧ (β(o, P, S, Q) ∨ β(o, P, Q, S) ∨ Q = S))]]

Proof.  Let o be an oriented curve and P, Q points such that p(o, P, Q). On this basis
and according to Corollary 3.9, Theorem 3.8.1 and Theorem 4.4 the right-hand side of
the equivalence in Corollary 4.18 is equivalent to

β(o, R, P, Q) ∧ (β(o, R, Q, S) ∨ β(o, R, S, Q) ∨ S = Q) ∨
P = R ∧ (β(o, P, Q, S) ∨ β(o, P, S, Q) ∨ S = Q)

∨ β(o, P, R, S) ∧ (β(o, P, R, Q) ∨ β(o, P, Q, R) ∨ Q = R)

which proves the theorem. √

With these preparations we are able to show that oriented lines consisting of the same
points and ordering one pair of points in the same way, are identical.

Theorem 4.20
∀o1 ∀o2 [∀P [P ι o1 ⇔ P ι o2] ∧ ∃P ∃Q [p(o1, P, Q) ∧ p(o2, P, Q)] ⇒

o1 = o2]

Proof.  Let o1, o2 be oriented curves that coincide in all their points and P, Q points
such that p(o, P, Q). Because of (O6) it suffices to show that for any points R and S
p(o2, R, S) follows from p(o1, R, S). Since o1 and o2 coincide in all points and because
of (O2) and (C9) we know that there is a curve c that coincides in all points with both
of them. Corollary 4.18 can—based on (O3)—be transformed into

p(oi, P, Q) ⇒ ∀R ∀S [p(oi, R, S) ⇔
((S ι c ∧ (β(c, R, P, Q) ∨ P = R) ∧ R ≠ S ∧ ¬β(c, S, R, Q))

 ∨ (β(c, P, R, S) ∧ ¬β(c, Q, P, R)))]

with i = 1, 2, which proves the theorem. √

The proof shows that a curve and a ordered pair of points uniquely determine an
oriented curve:

Corollary 4.21
∀o1 ∀o2 [uc(o1) = uc(o2) ∧ ∃P ∃Q [p(o1, P, Q) ∧ p(o2, P, Q)] ⇒

o1 = o2]

For every oriented curve there is an oppositely oriented curve with the same
underlying curve.

Theorem 4.22
∀o ∃o' [uc(o) = uc(o ') ∧ ∀P ∀Q [p(o, P, Q) ⇒ p(o', Q, P)]]

Proof.  Let P' and Q' be two points with p(o, P', Q'). According to Axiom (O5) for P',
Q' and uc(o) there is an oriented curve o'

∀R [R ι o' ⇔ R ι uc(o)] ∧ p(o', Q', P').

We note that for every point R follows: R ι o' ⇔ R ι o. If there is a pair of points R'
and S' with p(o, R', S') and p(o', R', S') then Theorem 4.20 yields p(o', P, Q) for all P
and Q satisfying p(o, P, Q) contrary to the assumption p(o', Q', P'). Hence we
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conclude ¬p(o', P, Q) for all P and Q fulfilling p(o, P, Q). Theorem 4.9 concludes the
proof. √

Remark.  Combining Theorem 4.22 with Corollary 4.21 we obtain that for every
oriented line there is exactly one uniquely determined oriented line with the same
underlying curve that orders the points in the opposite way.

Theorem 4.23
(1) ∀o ∀P ∀Q ∀R [p(o, P, Q) ⇒ (p(o, R, P) ⇔ β(o, R, P, Q))]

(2) ∀o ∀P ∀Q ∀R [p(o, P, Q) ⇒
(p(o, R, Q) ⇔ (β(o, R, P, Q) ∨ β(o, P, R, Q) ∨ P = R))]

(3) ∀o ∀P ∀Q ∀R [p(o, P, Q) ⇒
(p(o, P, R) ⇔ (β(o, P, R, Q) ∨ β(o, P, Q, R) ∨ Q = R))]

(4) ∀o ∀P ∀Q ∀R [p(o, P, Q) ⇒ (p(o, Q, R) ⇔ β(o, P, Q, R))]

(5) ∀o ∀P ∀Q ∀R ∀S [p(o, P, Q) ∧ P ≠ R ∧ P ≠ S ∧ Q ≠ S ∧ Q ≠ R ⇒
(p(o, R, S) ⇔

(β(o, R, P, Q) ∧ (β(o, R, S, Q) ∨ β(o, R, Q, S))) ∨
(β(o, P, R, S) ∧ (β(o, P, R, Q) ∨ β(o, P, Q, R))))]

Proof.  Application of Theorem 4.19, Theorem 4.4 and Theorem 3.8.1. √

If R is the starting point of o, then P precedes Q wrt. o, iff P is identical with R and Q
is on o but different from R or P is between R and Q on o.

Theorem 4.24
∀o ∀R [stpt(R, o) ⇒ ∀P ∀Q [p(o, P, Q) ⇔

(P = R ∧ Q ≠ R ∧ Q ι o) ∨ β(o, R, P, Q)]]

Proof.  Let R be starting point of o. If p(o, P, Q) then by (O1) Q ι o and by Theorem
4.4 Q ≠ R.. If Q is on o and different from R then by Theorem 4.9 p(o, R, Q). If P ≠ R,
then p(o, R, P) follows from the definition of starting point. Theorem 4.23.4 yields
p(o, P, Q) ⇔ β(o, R, P, Q). √

5 Conclusion

The results demonstrate that oriented curves can be considered as generalized
directions: Every curve can be oriented in exactly two ways and a pair ordered points
(or a starting or a finishing point) supplies a direction on a curve since the order for
every other pair of points is already determined.

In order to prove the consistency of the axioms (C1) – (C9) and (O1) – (O6)
respectively, a model is required for these axioms. Instead of giving a proof, we just
mention that polygonal curves fulfill the axioms (O1) – (O6) and their traces fulfill
axioms (C1) – (C9).

The basic restrictions on the relation between curves, oriented curves and points
are given in an axiomatic framework. The results are therefore applicable to any set of
curves that fulfill the requirements expressed here, independently of their
mathematical or spatial definition or specification. The axioms for curves specify
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general restrictions of linear structures that are not straight, such that the relation of
betweenness on curves can be defined on the basis of their (connected) parts. The
betweenness structure on curves is independent of the two orientations that can be
assigned to a linear structure and define two oriented curves.

An important difference between time and space is that the positions in space can
be traversed in many possible ways while the positions in the linear structure of time
cannot. Curves and oriented curves in space reflect this possibility on the geometric
level since different curves can connect a collection of positions in different orders.
Curves and oriented curves can therefore be interpreted as reified ordering relations in
a non-linear space. This provides the option to use oriented curves for representing
trajectories of objects moving through space without the additional representation of
time, as presented by Eschenbach, Habel, Kulik (1999).
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