
Example: Resolution Refutation
1. � X � X
2. U � V

�

W � V � U � W � ve � �

ve
3. � a � b
4. b � a �

Input clauses in
Kowalski Form:

Negated conjecture
�

X.
�

Y. X � Y � Y � X

Refutation as a path b � a 	

b � V '

a � V ' 	

b � b 	

	

Resolve with 2

Resolve with 3

Resolve with 1

(4)

(5)

(6)

(7)

Resolvant
is parent of next
resolution

Path gives an idea of shape of proof and also clauses that are used
Terminology: Linear Input Resolution

One of original input
clauses always a parent

Recall:

 Complete for Horn Clauses

Resolution Search Tree
1. � X � X
2. U � V

W � V � U � W
3. � a � b
4. b � a �

Input Clauses

Partial Refutation Proof Tree

 There are many possible resolution paths
b � a �

b � V '

�

a � V ' �

b � b � a � b � b � a �

� �

loop!

2

3

1 2 3

1 1
2

2

 ? ?

 ?

Which literal to use as
parent?

Which clause to use to
resolve literal away?

AND/OR choices

Automated Reasoning

Searching for a Refutation

Jacques Fleuriot

Lecture VI

The Story so Far

We have looked at

�

 Syntax and Semantics

� Rules of Inference + Proof

�

Resolution rule (refutation complete)

� need for unification

�

Resolution proof : looks for refutation by deriving empty clause

� Matching and Unification

�

most general unifiers

Next issue?

How do we actually find a proof using resolution?

Resolution Search Graph

Input Clauses

1. � X � X
2. U � V �

W � V � U � W
3. � a � b
4. b � a �

4. b � a �

5. b � V '

�

a � V ' �
6. b � b 	

2

2

3

1
2

8. a � b �

1

31

2

7

Refutation search graph

�

 Each clause represented by a single node
 i.e no duplication possible as is case with tree�

 Loops are clearly depicted

Looping and Subsumption

Definition of subsumption

C subsumes D iff

�

D' .

�

D � C �
 �

D'

Types of subsumption:

b � a � b � a �

r � s �Y � a �b � a �

P Q

where P subsumes Q:

May be''f"
May be empty

AND/OR Choices

 or
or

and

 or

AND Choice

� Case: Can resolve more than one literal in a clause

�

 All literals must eventually be resolved away to derive
empty clause

� must choose one AND then another

�

therefore, AND choices do not matter

OR Choice

� Case: Can resolve with more than one clause

�

 different clauses may not always yield a proof

�

 some paths may not lead to empty clause

� must choose one OR the other

�

therefore, OR choices do matter

Lush Resolution
1. � X � X
2. U � V �

W � V � U � W
3. � a � b
4. b � a �

Input Clauses

�

 Lush: Linear input resolution with Unrestricted Selection function for Horn Clauses�

 Lush resolution is complete for Horn Clauses

Lush Search Tree b � a �

b V '

!

a V ' "

a � b �
#

2

2 3

1 2

b $ V ' '

%

V ' $ V ' '

%

a $ V ' &

Selected literal

Pick an order and stick to it.
Example: ''always select leftmost
complementary literal"

Non-termination

This literal not used

Non-Horn Clauses
1. � natural n

�

non_negative n
2. natural n � non_negative n
3. non_negative n � natural n

4. natural n

�

non_negative n �
Top Clause:

Input clause

(4) natural n

�

non_negative n �

(5) natural n
�

natural n �

(6) � non_negative n

(7) � natural n

(8) �

1

2

3

5 ANCESTOR
i.e not input

Full Resolution
or factoring +
binary resolution

2

	 non_negative n

loop!

 Relax input restriction

�

 Selected literal: one of most recently
introduced literals in this example

�

 Note: (6) & (7) are negative goals

Non-Horn refutation

Search Strategies

� Full resolution is complete
�

 Lush resolution is complete for Horn clauses

Yes, assuming the search strategy is complete

Completeness of the inference system: "there exists a proof
using (say) Lush resolution"

Question: How do we find (search for) the proof?

i.e. in terms of tree: how to make OR choices?

Will briefly look at four strategies:

�

Depth-first search

� Breadth-first search

�

iterative deepening

�

Best-first search

Example: Subsumption

Y
 a � subsumes b
 a

�

s � t �

since
b
 a

�

s � t � � Y
 a � � �

s � t �

where

�
 b

�

Y

i.e

¬ Y � a subsumes ¬ b � a

�

¬ s � t
since
¬ b � a

�

¬ s � t � ¬ Y � a � � �

¬ s � t
where

� � b

�

Y

Subsumption Checking

� If a clause is subsumed, we can consider that branch to be blocked

� Subsumption checking stops further development of subsumed
clauses: it adds a restriction to resolution

� Subsumption preserves completeness (with some conditions)

b � a �

b � V '

a � V ' !

b " b # a � b � b � a �

$ $

loop!

2

3

1 2 3

1 1
2

2

 ? ?

 ? Block this second occurrence
otherwise looping may continue

Iterative Deepening

A

B C

D

H I

E F G

L

J K

M
X

X

X

X

latest clause

� Compromise between breadth-first and depth-first

�

Explore depth first but at most to depth 1
 then explore depth-first to depth 2
 then explore depth-first to depth 3, etc.

�

Complete search; shortest proof first

� no more storage required than depth-first

�

explores nodes high in search tree several times

Order of Nodes in Iterative Deepening

In what order are the nodes of the tree on the previous slide searched?
� (depth 1) A B C

� (depth 2) A B D E C F G

�

 (depth 3) A B D H I E J C F G K

At each level, search looks like breadth-first

Depth First Search
A

B I

C

D E

G J K

F

H L

M
X

X

X

X

latest clause

� Pursue current leftmost path until blocked,

�

 then back up to last choice

� incomplete search

�

 not guaranteed to find shortest proof

A � B � C � D � E � F � G � H � I � J � ...
I G E G G I I K

I G I I
I

Prepend to agenda:

Breadth First Search
A

B C

D

H I

E F G

L

J K

M
X

X

X

X

� Explore each level in turn

�

 Complete search

� always finds shortest proof

�

 expensive in terms of storage

latest clause

A � B � C � D � E � F � G � H � I � J � K � L � M
C D E F G H I J K L M

E F G H I J K L
G H I J K

I J

Perils of Evaluation Functions!

� Best-first search can be useful, but for some search problems it may be
inappropriate

� How much time do we spend fiddling with the evaluation function?

Do change it over time/with more experience

� Can we explain success or lack of success?

�

Can we learn general lessons for AR

�

How about cheating?

Summary
� Search trees and graphs

� subsumption as a restriction

�

 Lush resolution

�

Ancestor resolution for non-Horn clauses

� Search Strategies:

� depth-first, breadth-first, best-first search

�

need for evaluation function

�

incomplete and complete search strategies

�

Bundy Chapter 6

Best First (heuristic) Search

E 7

A

F 8 B 3

G 5

K 10 H 6

I 7 C 3 D 6

M 12

L 11

J 9
latest clause� Associate a score (or value) to each node

�

 Need some evaluation function to evaluate score of node

�

 Choice made on basis of evaluation

� Evaluation function (hence score) is usually heuristic, so no guarantees:
may be complete
may be shortest first

Score attached to node

Evaluation Functions

� Good evaluation functions are hard to define

�

 Good heuristic scores usually depend on the problem

� Example of best-first scoring: functions are from clauses to numbers

� e.g. Length of clause (the shorter the better)
b � V '

�

a � V ' �

a � b � b 	 V ' '

V ' 	 V ' '

a 	 V' �
l � 1 l � 3

� Depth of function nesting (measure of complexity)
x
 y

�

x

�

1
 2 � y � 1 �

�

yx

�

y2
�

�

1x
�

1

depth � 3

depth � 1

Total depth = 4

