Automated Reasoning

Searching for a Refutation

Jacques Fl euri ot

Lecture VI

The Story so Far

We have |ooked at
* Syntax and Semantics
* Rules of Inference + Proof

* Resolution rule (refutation complete)

* need for unification

* Resolution proof : looks for refutation by deriving empty clause
* Matching and Unification

* most genera unifiers
Next issue?

How do we actually find a proof using resolution?

Example: Resolution Refutation

Input clausesin 1 - X=X Recall:
Kowaski Form: 2. U=VAW=V - U=W —ve - +ve
3. - a=b _
Y X.VYY. =Y->Y=
4 b=a — Negated conjecture X VY. X=Y-Y=X

Refutation as a path (4) lm N
Resolve with 2

—\/ —_\/ N One of original input
Resolvant 0O b=V" A - clauses always a parent
Is parent of next | Resolve with 3 ‘/

resolution
e [b=bl-

| Resolve with 1

" -
Path gives an idea of shape of proof and also clauses that are used
Terminology: Linear Input Resolution Complete for Horn Clauses

Resolution Search Tree

Input Clauses 1. - X=X

2. U=VAW=V - U=W
3. - a=b
4. b=a -

)] Which literal to use as
There are many possible resolution paths parent?

. . b=a -
Partial Refutation Proof Tree)
Which clause to use to ‘

resolve literal avay? ~~a b=V' A a=V' -

//jL////j;/ fiiii:iii::fl\\\
b acbh bean s 5

2
loop! ’

A

_>

2 AND/OR choices

AND Choice

¢ Case: Can resolve more than one literal in aclause o% .
* All literals must eventually be resolved away to derive

empty clause

AND/OR Choices

and

e must choose one AND then another
¢ therefore, AND choices do not matter

OR Choice

* Case: Can resolve with more than one clause

* different clauses may not aways yield a proof

* some paths may not lead to empty clause —
* must choose one OR the other
* therefore, OR choices do matter

Input Clauses

> e

Lush Search Tree

L ush Resolution

- X=X

U=VAW=V - U=W

- a=b

b=a —

Pick an order and stick toit.

b=a - Example: "always select leftmost
5 complementary literal"

Selected literal —» A a=V' -

Thislitera not used
1= 2

b=V'"" A V'=V'" A a=V' -

Non-termination

¢ Lush: Linear input resolution with Unrestricted Selection function for Horn Clauses
* Lush resolution is complete for Horn Clauses

Resolution Search Graph

Input Clauses 2. U=VAW=V - U=W
3. - a:b
4, b=a -
4, —>
Refutation search graph > 1

5 b=V' A [a=V| -

6[b=b]-

¢ Each clause represented by a single node
i.eno duplication possible asis case with tree 7
* Loops are clearly depicted

L ooping and Subsumption

Types of subsumption:

Definition of subsumption
C subsumes D iff 3D'. ¢ DE(Cod),Q/D'\

8.—>

— where P subsumes Q:

© @

May be'f"

May be empty

Example: Subsumption

Y=a— subsumes b=a A s>t -

since
b=a A s>t - = (Y=a)op A s>t
where¢ = {b/Y|

-(Y=a) subsumes -(b=a) V -(s>t)

since

a(b=a) vV ~(s>t) = (7(Y=a)og) V a(s>1)
whereg = {b/Y|

Subsumption Checking

¢ |f aclause is subsumed, we can consider that branch to be blocked

* Subsumption checking stops further development of subsumed
clauses: it adds arestriction to resolution

* Subsumption preserves completeness (with some conditions)

Block this second occurrence
otherwise looping may continue

Non-Horn Clauses

1. — natural(n) v non_negative(n)
Input clause 2. natural(n) — non_negative(n)
3. non_negative(n)- natural (n)

Top Clause: 4. natural(n) A non_negative(n) —

Non-Horn refutation

(4) natural (n) /\‘non_neganve(n)‘ -

|2
~ non_negative(n) (5) natural (n)| A |natural (n) —
loop! - | 1 Full Resolution
2 (6) — |non_negative(n)| or factoring +
E binary resolution

* Relax input restriction

* Selected literal: one of most recently (7) — | natural (n>
introduced literalsin this example |5 «— ANCESTOR
* Note: (6) & (7) are negative goals 8) — i.e not input

Search Strategies

* Full resolution is complete
* Lush resolution is complete for Horn clauses
Y es, assuming the search strategy is complete

Completeness of the inference system: "there exists a proof
using (say) Lush resolution”

Question: How do we find (search for) the proof?
i.e. interms of tree: how to make OR choices?
Will briefly look at four strategies:
* Depth-first search
* Breadth-first search
* jterative deepening
* Best-first search

Depth First Search
* Pursue current leftmost path until blocked, @0

* then back up to last choice

* incompl ete search Q @
* not guaranteed to find shortest proof X
Prepend to agenda latest clause

A-B-C»rDrE-F->G-oH-=-1-J- .
G E]l G G I I K
I G
I

Breadth First Search

* Explore each level in turn @
* Complete search
* dways finds shortest proof @ @
* expensive in terms of storage X
0
;
L
X latest clause
A-B-C—-»D-E->F->G-oH->1>J->K->L-M
C D E F G H I J K L M
E F G H I J K L
G H I J K
I J

Iterative Deepening Q
© ® .
I éD

X X
w

X latest clause
¢ Compromise between breadth-first and depth-first

*Explore depth first but at most to depth 1
then explore depth-first to depth 2
then explore depth-first to depth 3, etc.
¢ Complete search; shortest proof first
* no more storage required than depth-first
* explores nodes high in search tree several times

Order of Nodes in Iterative Deepening

In what order are the nodes of the tree on the previous dlide searched?

(depth1) A B C
(depth2) ABDECF G
(depth3) ABDHI EJCFGK

At each level, search looks like breadth-first

Best First (heuristic) Search

Score attached to node

G5) a7 €3 ©e)
£, it
M12) 390

* Associate a score (or value) to each node |atest clause
* Need some evaluation function to evaluate score of node
* Choice made on basis of evaluation
* Evaluation function (hence score) is usually heuristic, so no guarantees:
may be complete
may be shortest first

Evauation Functions

* Good evaluation functions are hard to define
* Good heuristic scores usually depend on the problem
* Example of best-first scoring: functions are from clauses to numbers

* e.g. Length of clause (the shorter the better)
b=V' A a=V' -

a=b N @/\O b:V" A V':V" A a:V‘ 5

=1 =3

* Depth of functl on nestlng (measure of complexity)
X+1=2-y-1 -

+
_/% o =

Total depth = 4

Perils of Evaluation Functions!

* Best-first search can be useful, but for some search problemsit may be
inappropriate

* How much time do we spend fiddling with the evaluation function?
Do change it over time/with more experience

* Can we explain success or lack of success?

* Canwelearn general lessonsfor AR

* How about cheating?

Summary

* Search trees and graphs

* subsumption as arestriction

* Lush resolution

* Ancestor resolution for non-Horn clauses

* Search Strategies:
* depth-first, breadth-first, best-first search
* need for evaluation function
* incomplete and complete search strategies

* Bundy Chapter 6

