
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL3: Concurrency Abstractions

David Aspinall

School of Informatics
The University of Edinburgh

Tuesday 28 September 2010
Semester 1 Week 2

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Techniques for concurrency

This is the second of a block of lectures looking at programming-language
techniques for managing concurrency.

Introduction, basic Java concurrency

Concurrency abstractions in Java

Concurrency in some other languages



Outline

1 Data abstractions

2 Control abstractions

3 Closing



Thread safety

To avoid consistency problems with racy code, the programmer should
explain which classes are considered thread safe, especially for library
classes used for storing data that is likely to be shared between threads.

Informally, a class is thread safe if its methods may be invoked from
different threads at the same time. A precise definition is much more tricky.

a good idea to document this, e.g. with an annotation @ThreadSafe.

A very naive approach to concurrency problems is to fix concurrency bugs
by successively adding more uses of synchronize. Just like deleting
statements that cause runtime errors, this rarely succeeds (why not?).

A better approach is to make objects immutable when feasible. Once
constructed, such an object cannot be modified, so is inherently thread
safe. A precise definition is suprisingly tricky.

good idea to document this, e.g., writing @Immutable.



Thread safety

To avoid consistency problems with racy code, the programmer should
explain which classes are considered thread safe, especially for library
classes used for storing data that is likely to be shared between threads.

Informally, a class is thread safe if its methods may be invoked from
different threads at the same time. A precise definition is much more tricky.

a good idea to document this, e.g. with an annotation @ThreadSafe.

A very naive approach to concurrency problems is to fix concurrency bugs
by successively adding more uses of synchronize. Just like deleting
statements that cause runtime errors, this rarely succeeds (why not?).

A better approach is to make objects immutable when feasible. Once
constructed, such an object cannot be modified, so is inherently thread
safe. A precise definition is suprisingly tricky.

good idea to document this, e.g., writing @Immutable.



Thread safety

To avoid consistency problems with racy code, the programmer should
explain which classes are considered thread safe, especially for library
classes used for storing data that is likely to be shared between threads.

Informally, a class is thread safe if its methods may be invoked from
different threads at the same time. A precise definition is much more tricky.

a good idea to document this, e.g. with an annotation @ThreadSafe.

A very naive approach to concurrency problems is to fix concurrency bugs
by successively adding more uses of synchronize. Just like deleting
statements that cause runtime errors, this rarely succeeds (why not?).

A better approach is to make objects immutable when feasible. Once
constructed, such an object cannot be modified, so is inherently thread
safe. A precise definition is suprisingly tricky.

good idea to document this, e.g., writing @Immutable.



Managing atomicity

If an object cannot be made immutable, then accesses to it can be made
atomic to avoid race conditions. Even x++ is not an atomic operation!

A non thread-safe hit counter

@NotThreadSafe
public class BadHitCounter {

private int hits = 0;

public int getHits() { return hits.get(); }

public String fetchPage() {
String page = ... ; page = page + hits++; ...
return page;

}
}



Managing atomicity

If an object cannot be made immutable, then accesses to it can be made
atomic to avoid race conditions. Even x++ is not an atomic operation!

A thread-safe hit counter

@ThreadSafe
public class GoodHitCounter {

private int hits = 0;

public synchronized int getHits() { return hits; }

public synchronized String fetchPage() {
String page = ... ; page = page + hits++; ...
return page;

}
}



Managing atomicity

If an object cannot be made immutable, then accesses to it can be made
atomic to avoid race conditions. Even x++ is not an atomic operation!

A thread-safe hit counter using AtomicInteger

import java.util.concurrent.atomic.AtomicInteger;
@ThreadSafe
public class GoodHitCounter2 {

private final AtomicInteger hits = new AtomicInteger(0);

public integer getHits() { return hits.get(); }

public String fetchPage() {
String page = ... ; page = page + hits.incrementAndGet(); ...
return page;

}
}



Synchronizing many objects

How do we manage synchronization across compound objects in a system?

A synchronization policy is necessary to describe which locks protect which
pieces of shared data, who is responsible for obtaining the locks, and in
which order they are obtained.

Deadlock 101
Thread A:

synchronized (o1) {
...
synchronized (o2) {
...

}
}

Thread B:

synchronized (o2) {
...
synchronized (o1) {
...

}
}



Thread safe collections

Some basic Java collection classes are not thread safe, but convenient
wrapper methods can add synchronization around accessor methods.

List<Customer> customerList =
Collections.synchronizedList(new ArrayList<Customer>());

addCustomers(customerList);

for (Customer c : customerList) {
processCustomer(c);

}

Despite using a synchronized list, it is still possible for this code to throw
ConcurrentModificationException. Why? How could it be avoided?



Thread safe collections

Some basic Java collection classes are not thread safe, but convenient
wrapper methods can add synchronization around accessor methods.

List<Customer> customerList =
Collections.synchronizedList(new ArrayList<Customer>());

addCustomers(customerList);

for (Customer c : customerList) {
processCustomer(c);

}

The addCustomers call leaks the reference to the customer list. It’s possible
that another thread retains this and manipulates the list after return.



Thread safe collections

Some basic Java collection classes are not thread safe, but convenient
wrapper methods can add synchronization around accessor methods.

List<Customer> customerList =
Collections.synchronizedList(new ArrayList<Customer>());

addCustomers(customerList);

for (Customer c : customerList) {
processCustomer(c);

}

The implicit iteration in the for loop may interact with another thread that
is modifying the list. We must lock the whole list while iterating.



Thread safe collections

Some basic Java collection classes are not thread safe, but convenient
wrapper methods can add synchronization around accessor methods.

List<Customer> customerList =
Collections.synchronizedList(new ArrayList<Customer>());

addCustomers(customerList);

for (Customer c : customerList) {
processCustomer(c);

}

Confusingly, even single-threaded code can throw ConcurrentModificationException, when the
API contract of call sequences is violated by modifying during iteration; Java chooses a fail fast
policy to detect this between calls and abort.



Concurrent collections

The drawback with synchronized compound objects is that further locking
may be required when executing compound operations, so we haven’t
automatically solved consistency problems.

More crucially, they may become a serialization bottleneck as serialising
accesses prevents concurrency.

The concurrent collections introduced in Java 5.0 allow a remedy.

Interfaces:
Queue
List
ConcurrentMap
BlockingQueue

Classes:
ConcurrentLinkedQueue
CopyOnWriteArrayList
ConcurrentHashMap
ArrayBlockingQueue

These live in the package java. util .concurrent alongside other utilities.
They use various mechanisms to give thread safe results, including
non-blocking algorithms and lower-level features such as volatile variables.



Queues and producer-consumer patterns
The producer-consumer pattern is a common way to decouple jobs and
achieve scalable parallelism.
A queue acts as thread-safe “glue” which allows independent tasks to
proceed on each side without interfering. Consumers block when the
queue is empty; producers block when the queue full.

Producer
threads

Consumer
threadsQueue

BlockingQueue access methods
Throws ex’n Special value Blocks Times out

Insert add(e) offer(e) put(e) offer(e, time, unit)
Remove remove() poll() take() poll(time, unit)
Examine element() peek() – –



Outline

1 Data abstractions

2 Control abstractions

3 Closing



Application frameworks

Application frameworks separate duties and isolate subparts of a system
by using different threads for different tasks. For example:

The Java Virtual Machine runs a thread for executing the program’s
main() method, which may start further threads; it also runs daemon
threads for housekeeping tasks such as garbage collection.
Swing applications create a GUI thread which uses an input event
queue; all GUI operations are confined to the GUI thread.
JEE application servers use a thread pool to use for container tasks.

To manage finer grained concurrency in a system, some form of additional
management on top of threads is often desirable, for example, to manage
work queues and tasks effectively.

Finer granularity allows applications to avoid excessive overhead, by
reducing the amount of context switching and the load on a single system
level scheduler (which may have hard limits).



Tasks and executors

Effective concurrent programs subdivide work into tasks, which are as
independent as possible. Some types of tasks may have to be executed in
a given sequence, one at a time. Others may be executed concurrently in
multiple threads.

Java provides executors as an abstraction for work queues which execute
tasks. An executor encapsulates one or more threads.

public interface Runnable {
void run();

}

public interface Executor {
// execute command at some time
void execute(Runnable command);

}

Executor workerExecutor =
Executors.newFixedThreadPool(5);

// schedule 20 jobs immediately
for (int i = 0; i<20; i++) {

WorkerJob job = new WorkerJob();
workerExecutor.execute(job);

}



Executor Strategies

Executors can encode particular strategies for managing the execution of
tasks between different threads.

Standard executors include:

Fixed thread pool
tasks are run by a fixed number of threads;

Cached thread pool
the pool of threads grows and shrinks dynamically;

Single thread
tasks are executed in order in one thread;

Scheduled thread pool
a thread pool for executing tasks periodically.



Futures
Simple Runnable tasks do something and then finish. To communicate a
result, Java uses futures, which are an abstraction of asynchronous
result-returning computations. Futures can also be managed by executors.

public interface Callable<V> {
V call() throws Exception;

}

public interface Future<V> {
V get();

// maybe blocking
void cancel();
boolean isCancelled();
boolean isDone();

}

FutureTask<Integer> searchFuture =
new FutureTask<String>(new Callable<String>() {
public String call() {
return searcher.findMatch(target);

}});

// search while we do something else
executor.execute(searchFuture);
...
if (searchFuture.isDone()) {
result = searchFuture.get();

} else {
result = "not found";
searchFuture.cancel();

}



Outline

1 Data abstractions

2 Control abstractions

3 Closing



Homework

Before the next lecture:

Write a program which demonstrates the race condition in
BadHitCounter.
Explore the deficiencies of Java intrinsic locking by describing
programs which demonstrate when:

it might be desirable to back-off from an attempt to acquire a lock;
it might be desirable for a lock not to be reentrant;
it would be useful to have non-block structured locking.

Investigate some of the facilities included in java.util.concurrent.
Specifically, use them to:

re-implement your pigeon fancier program using executors;
modify the program to allow the pigeon coop to be rerranged (by
inserting or removing pigeon holes) while in use, but with minimal
disruption.



Summary

Java concurrency abstractions

Java provides concurrency extensions in the library java. util .concurrent.
These include:

concurrent collections which include scalable thread-safe classes for
lists, maps and queues;
task management at a finer granularity than threads, using
executors which provide a range of thread pooling and (simple)
scheduling strategies.

Java 7 will have a fork-join library for managing tasks which subdivide
themselves, and executors which schedule tasks with work stealing.

futures which are asynchronous tasks that return results.

Similar abstractions are available in other languages and libraries.



References

Brian Goetz with Time Peierls, Joshua Block, Joseph Bowbeer, David
Holmes and Doug Lea. Java Concurrency In Practice. Pearson, 2006.

the current essential reference for concurrent Java programming.

Doug Lea. Concurrent Programming in Java. Second Edition. Design
Principles and Patterns. Addison-Wesley, 2000.

the original standard text, describing many of the patterns now
implemented inside java.util.concurrent, and some of the horrors
of the Java Memory Model.

Christian Haack, Erik Poll, Jan Schäfer and Aleksy Schubert. Immutable
Objects for a Java-Like Language, Proc. European Symposium On
Programming 2007, Springer Lecture Notes in Computer Science 4421,
pages 347–362, 2007.

a precise formalisation of immutability for a simplifed version of Java.


	Data abstractions
	Control abstractions
	Closing

