
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL16: Bidirectional Programming II

David Aspinall

School of Informatics
The University of Edinburgh

Tuesday 23rd November 2010
Semester 1 Week 10

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/da
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Bidirectional Programming and Text Processing

This block of lectures covers some language techniques and tools for
manipulating structured data and text.

Motivations, simple bidirectional transformations

Boomerang and complex transformations

XML processing with CDuce

This lecture introduces some of the more advanced aspects of Boomerang.

Outline

1 Boomerang recap

2 Mapping positions

3 Normalisation

4 A Third Way

5 Summary

Outline

1 Boomerang recap

2 Mapping positions

3 Normalisation

4 A Third Way

5 Summary

Boomerang again

David Aspinall, da@inf.ed.ac.uk, IF 4.04A
Ian Stark, stark@inf.ed.ac.uk, IF 5.04
Philip Wadler, wadler@inf.ed.ac.uk, IF 5.31

A lens with a view of only name and email

module Nameemail =
let NAME = [a−zA−Z]+ let EMAIL = [a−zA−Z@.]+
let OFFICE = [AZ0−9.]+

let nameemail : lens = NAME . ", " . EMAIL . del ", " . del OFFICE

let nameemails : lens =
"" | nameemail . (newline . nameemail)∗

Recall: a regexp R is coerced to the lens copy R.

Boomerang failure modes

A Boomerang program can go wrong in these ways:

static type-checking error: the program is malformed.

For example, the languages defined by regular expressions do not
meet semantic requirements (e.g., splittable concatenations).
dynamic runtime error: the program hits an erroneous state during
execution.

For example, a get or put operation is applied to a string which is
not in its domain, because it doesn’t belong to the source or view
value sets.

But: strong typing for the lens combinators means that the only place
that this may happen will be on inputs directly supplied by the user.
In particular, the usual benefit of static typing applies: there should
be no obscure failures deep in the program.

Boomerang: testing get

You can write unit tests in Boomerang which specify the expected results:

test nameemails.get staffdb =
<<
David Aspinall, da@inf.ed.ac.uk
Ian Stark, stark@inf.ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>

Putting this together with previous definitions into a file
nameemails.boom and then executing:

boomerang nameemails.boom

produces no output, indicating that the test succeeded.

Boomerang: testing put

This test also succeeds:

test nameemails.put
<<
David Aspinall, da@inf.ed.ac.uk
Ian Stark, Ian.Stark@ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>
into staffdb =
<<
David Aspinall, da@inf.ed.ac.uk, IF 4.04A
Ian Stark, Ian.Stark@ed.ac.uk, IF 5.04
Philip Wadler, wadler@inf.ed.ac.uk, IF 5.31
>>

Boomerang: testing put

This test also succeeds:

test nameemails.put
<<
David Aspinall, da@inf.ed.ac.uk
Ian Stark, Ian.Stark@ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>
into staffdb =
<<
David Aspinall, da@inf.ed.ac.uk, IF 4.04A
Ian Stark, Ian.Stark@ed.ac.uk, IF 5.04
Philip Wadler, wadler@inf.ed.ac.uk, IF 5.31
>>

Boomerang: testing put

This test also succeeds:

test nameemails.put
<<
David Aspinall, da@inf.ed.ac.uk
Ian Stark, Ian.Stark@ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>
into staffdb =
<<
David Aspinall, da@inf.ed.ac.uk, IF 4.04A
Ian Stark, Ian.Stark@ed.ac.uk, IF 5.04
Philip Wadler, wadler@inf.ed.ac.uk, IF 5.31
>>

Outline

1 Boomerang recap

2 Mapping positions

3 Normalisation

4 A Third Way

5 Summary

A failed test

test nameemails.put
<<
Ian Stark, Ian.Stark@ed.ac.uk
>>
into staffdb =
<<
David Aspinall, da@inf.ed.ac.uk, IF 4.04A
Ian Stark, Ian.Stark@ed.ac.uk, IF 5.04
Philip Wadler, wadler@inf.ed.ac.uk, IF 5.31
>>

The put operation is defined, but the output is not what is claimed.

Why not and what is the value of put?

Rearranging the input

Here is another test, where we do not delete records but rearrange them.

test nameemails.put
<<
Ian Stark, Ian.Stark@ed.ac.uk
David Aspinall, da@inf.ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>
into staffdb = ?

Rearranging the input

Here is another test, where we do not delete records but rearrange them.

test nameemails.put
<<
Ian Stark, Ian.Stark@ed.ac.uk
David Aspinall, da@inf.ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>
into staffdb =
<<
Ian Stark, Ian.Stark@ed.ac.uk, IF 4.04A
David Aspinall, da@inf.ed.ac.uk, IF 5.04
Philip Wadler, wadler@inf.ed.ac.uk, IF 5.31
>>

This is the answer we get: but Ian and I have swapped rooms!

Rearranging data

This fails because the interpretation of the lens for the Kleene *
(sequence) operator maps updates by position.

So, the first position in the view update is mapped to the first position in
the source, and so on.

But in practice, the order of some parts of the data may not be important.

Can you think of a way to solve this?

Note: with a semantics based on update operations rather than a single view state, this would
be handled automatically, because data insertions, deletions and movement could be recorded.
This option is not (automatically) available to Boomerang, so rearrangements must be deduced.

Rearranging data

This fails because the interpretation of the lens for the Kleene *
(sequence) operator maps updates by position.

So, the first position in the view update is mapped to the first position in
the source, and so on.

But in practice, the order of some parts of the data may not be important.

Can you think of a way to solve this?

Note: with a semantics based on update operations rather than a single view state, this would
be handled automatically, because data insertions, deletions and movement could be recorded.
This option is not (automatically) available to Boomerang, so rearrangements must be deduced.

Rearranging data

This fails because the interpretation of the lens for the Kleene *
(sequence) operator maps updates by position.

So, the first position in the view update is mapped to the first position in
the source, and so on.

But in practice, the order of some parts of the data may not be important.

Can you think of a way to solve this?

Note: with a semantics based on update operations rather than a single view state, this would
be handled automatically, because data insertions, deletions and movement could be recorded.
This option is not (automatically) available to Boomerang, so rearrangements must be deduced.

Resourceful Lenses in Boomerang

To solve this, Boomerang introduces “chunks” 〈s〉, which are pieces of data
inside imagined markers 〈 and 〉. Data can be reordered between chunks.

The source and view data sets are split up into:

the rigid parts — a “skeleton” describing the shape of the data, where
chunks are placeholders for data;
the resource — the data carried by the skeleton, which fill in the
chunks.

The programmer specifies where chunks may appear and how they are
aligned. The underlying functions for the lens compute transformations to
reorder the data as needed.

The precise semantics is involved: the data language is extended with chunk markers and erasure
and skeleton functions; each lens requires a new function and is constrained by 8 new laws.

Resourceful Lenses in Boomerang

To solve this, Boomerang introduces “chunks” 〈s〉, which are pieces of data
inside imagined markers 〈 and 〉. Data can be reordered between chunks.

The source and view data sets are split up into:

the rigid parts — a “skeleton” describing the shape of the data, where
chunks are placeholders for data;
the resource — the data carried by the skeleton, which fill in the
chunks.

The programmer specifies where chunks may appear and how they are
aligned. The underlying functions for the lens compute transformations to
reorder the data as needed.

The precise semantics is involved: the data language is extended with chunk markers and erasure
and skeleton functions; each lens requires a new function and is constrained by 8 new laws.

A Reorderable Address List

The programmer gains a few new language features.

module Nameemail2 =

let NAME = [a−zA−Z]+
let EMAIL = [a−zA−Z@.]+
let OFFICE = [A−Z0−9.]+

let nameemail : lens =
key NAME . ", " . EMAIL . del ", " . del OFFICE

let nameemails : lens =
"" | <nameemail> . (newline . <nameemail>)∗

A Reorderable Address List: testing

With this alteration, we get a correct behaviour from the previous update
example.

test nameemails.put
<<
Ian Stark, Ian.Stark@ed.ac.uk
David Aspinall, da@inf.ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>
into staffdb =
<<
Ian Stark, Ian.Stark@ed.ac.uk, IF 5.04
David Aspinall, da@inf.ed.ac.uk, IF 4.04A
Philip Wadler, wadler@inf.ed.ac.uk, IF 5.31
>>

Heuristics for alignment

Boomerang extends this basic idea with additional practical features.

The data sets may contain multiple skeletons, with different kinds of
data chunks aligned independently. These are specified with tags:

<tag : lens>

A tag contains a name, but can also specify alignment strategy.

Alignment strategies available include:
positional the default, aligning sequentially
key-based using keys where unique, then a cost heuristic
diff-like minimising edit distances

operation-based if the operations are recorded somehow, the
reordering can be supplied to the update.

Varieties of alignment

See the Boomerang user manual for more on how to program with these
different mechanisms.

Credit: picture above taken from J. N. Foster’s PhD thesis Bidirectional Programming
Languages, University of Pennsylvania, 2009.

Outline

1 Boomerang recap

2 Mapping positions

3 Normalisation

4 A Third Way

5 Summary

The need for normalisation

test nameemails.put
<<
Ian Stark, Ian.Stark@ed.ac.uk
David Aspinall, da@inf.ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>
into staffdb = ?

Produces a long error message:

File "nameemail2.boom", ... Test result: error
File "nameemail2.boom", ... run−time checking error
v="Ian Stark, Ian.Stark@ed.ac.uk...
did not satisfy ... string does not match ...
... [Ian Stark,] AROUND HERE [Ian.Stark ...

The need for normalisation

test nameemails.put
<<
Ian Stark, Ian.Stark@ed.ac.uk
David Aspinall, da@inf.ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>>
into staffdb = ?

Produces a long error message:

File "nameemail2.boom", ... Test result: error
File "nameemail2.boom", ... run−time checking error
v="Ian Stark, Ian.Stark@ed.ac.uk...
did not satisfy ... string does not match ...
... [Ian Stark,] AROUND HERE [Ian.Stark ...

— the view update had one too many spaces!

Approaches to Normalisation

In practice we want to allow for extra white space, noisy input, etc, where
it doesn’t matter: inputs should be normalised or made canonical before
being converted.

However, this may break the PutGet law. (Ex: why?)

Solutions that researchers have considered include:
give up or alter the laws;
add functions to lenses which convert to/from canonical form;
use equivalence relations in the laws.

Quotient Lenses: lenses with equivalence relations

Equivalence relations can be added easily to the semantic framework, by
supposing that each lens has a pair of equivalence relations built in:

∼S on its source S;
∼V on its view V.

Recall that an equivalence relation ∼ is a relation that behaves like
equality: it is reflexive, symmetric and transitive.

A subscript on ∼ like ∼T is denotes the set the relation belongs to.

The lens functions must respect equivalence, meaning that equivalent
inputs are mapped to equivalent outputs.

Equality (identity) itself is an equivalence relation; it is the default choice
for lenses.

Laws for Quotient Lenses

The laws are modified to hold up to equivalence:

PutGet get(put(v ′, s)) ∼V v ′

GetPut put(get(s), s) ∼S s

CreateGet get(create(v)) ∼V v

The programming language is then extended with constructs to allow
coarser equivalences to be defined on lenses.

For example, we may want a particular lens to consider all sequences of
whitespace characters as equivalent to a single whitespace character.

Building quotient lenses: canonizers

Suppose S and U are sets with equivalences, where the equivalence on S is
coarser (e.g., equating sequences of whitespace) than on U (which only
has canonical amounts of whitespace).

Quotient lenses can be introduced with canonizers for S and U, a pair of
functions:

canonize : S→ U

choose : U→ S

such that
canonize(choose(u)) ∼U u

for all u ∈ U. In other words, choosing a representative element for u and
then canonizing again must give us back the same element.

A canonizer is a bit like a lens without put. Indeed, lenses can be used to define canonizers
using their get and create functions.

Quotient on the left

The left quotient operation makes a new lens from an old one by joining a
canonizer on the left (it composes the get function from S with the
canonize function).

Intuitively, this collapses some of the source values in S.

Picture credit: Foster’s PhD thesis.

Quotient delete

Recall del, which deletes a string from the source with get, and restores it
with put.

Since deletion removes an ignored part of the input, it’s a natural place to
collapse some input values.

The (quotient) lens qdel R s deletes any string from R in the forwards
direction, treating strings from R as equivalent. In the reverse direction, it
restores s as the chosen string.

(For well-formedness, it must be the case that s ∈ R).

Quotient insert

Symmetrically, a right quotient collapses some of the view values. It
composes a lens with a canonizer on the right. The canonization happens
in the put function.

Recall ins v, which inserts a fixed string v into the view and has the empty
string as its source set.

The quotient lens version qins R v is like ins v in the get direction. In the
put direction, it accepts any string from R, not just v.

(For well-formedness, it must be the case that v ∈ R).

Addresses with quotients: flexible, normalised whitespace

let NAME = [a−zA−Z]+
let EMAIL = [a−zA−Z@.]+
let OFFICE = [A−Z0−9.] . [A−Z0−9.]+
let SEP = "," . [\t]∗

let nameemail : lens =
key NAME .
(qdel SEP "," . qins SEP ",\t\t") . EMAIL .
qdel SEP "," . del OFFICE

let staffdb : string =
<<
David Aspinall, da@inf.ed.ac.uk, IF 4.04A
Ian Stark, stark@inf.ed.ac.uk, IF 5.04
Philip Wadler, wadler@inf.ed.ac.uk, IF 5.31
>>

Addresses with quotients: flexible, normalised whitespace

let NAME = [a−zA−Z]+
let EMAIL = [a−zA−Z@.]+
let OFFICE = [A−Z0−9.] . [A−Z0−9.]+
let SEP = "," . [\t]∗

let nameemail : lens =
key NAME .
(qdel SEP "," . qins SEP ",\t\t") . EMAIL .
qdel SEP "," . del OFFICE

nameemails.get staffdb =

David Aspinall, da@inf.ed.ac.uk
Ian Stark, stark@inf.ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk"

Addresses with quotients: flexible, normalised whitespace

let NAME = [a−zA−Z]+
let EMAIL = [a−zA−Z@.]+
let OFFICE = [A−Z0−9.] . [A−Z0−9.]+
let SEP = "," . [\t]∗

let nameemail : lens =
key NAME .
(qdel SEP "," . qins SEP ",\t\t") . EMAIL .
qdel SEP "," . del OFFICE

nameemails.put
<<
Ian Stark,Ian.Stark@ed.ac.uk
David Aspinall, da@inf.ed.ac.uk
Philip Wadler, wadler@inf.ed.ac.uk
>> into staffdb = ?

Addresses with quotients: flexible, normalised whitespace

let NAME = [a−zA−Z]+
let EMAIL = [a−zA−Z@.]+
let OFFICE = [A−Z0−9.] . [A−Z0−9.]+
let SEP = "," . [\t]∗

let nameemail : lens =
key NAME .
(qdel SEP "," . qins SEP ",\t\t") . EMAIL .
qdel SEP "," . del OFFICE

Ian Stark,Ian.Stark@ed.ac.uk,IF 5.04
David Aspinall,da@inf.ed.ac.uk,IF 4.04A
Philip Wadler,wadler@inf.ed.ac.uk,IF 5.31

Outline

1 Boomerang recap

2 Mapping positions

3 Normalisation

4 A Third Way

5 Summary

Another route to bidirectional programming

We suggested solving bidirectional programming by these ways:
meta-programming with a general purpose language
using a DSL with a custom abstraction

Boomerang follows the second approach.

Is there a third approach?
fully automatically: derive bidirectional programs from ordinary
one-way programs, without meta-programming

Sounds tricky...

Bidirectionalization for Free!

Janis Voigtländer.
Bidirectionalization for free! (Pearl).
In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, Savannah, GA,
USA., pages 165–176, ACM, 2009.

Voigtländer’s paper shows how to write automatic bidirectionalizers in
Haskell. Given a get function with a polymorphic type, his higher order
function will return a corresponding put function as if by magic, without
examining the syntax of get.

How it works. Behind the scenes, Voigtländer’s function exploits the polymorphic
type of get to execute it on test input data. This allows tracking rearrangements
of the input into the output, automatically finding mappings like those in
Boomerang’s resourceful lenses. The mappings are used to define a corresponding
put function. The solution is ingenious, especially in that the PutGet and GetPut
laws are proved. However, efficiency reasons mean that it is best used for
prototyping rather than for final versions of bidirectional transformations.

http://doi.acm.org/10.1145/1480881.1480904

Bidirectionalization for Free!

Janis Voigtländer.
Bidirectionalization for free! (Pearl).
In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, Savannah, GA,
USA., pages 165–176, ACM, 2009.

Voigtländer’s paper shows how to write automatic bidirectionalizers in
Haskell. Given a get function with a polymorphic type, his higher order
function will return a corresponding put function as if by magic, without
examining the syntax of get.

How it works. Behind the scenes, Voigtländer’s function exploits the polymorphic
type of get to execute it on test input data. This allows tracking rearrangements
of the input into the output, automatically finding mappings like those in
Boomerang’s resourceful lenses. The mappings are used to define a corresponding
put function. The solution is ingenious, especially in that the PutGet and GetPut
laws are proved. However, efficiency reasons mean that it is best used for
prototyping rather than for final versions of bidirectional transformations.

http://doi.acm.org/10.1145/1480881.1480904

Outline

1 Boomerang recap

2 Mapping positions

3 Normalisation

4 A Third Way

5 Summary

Summary

Bidirectional programming
Bidirectional transformations map view updates back to source.
Applications: database views, MDD, UIs, sync, . . .
Foundations: get, put, create, and their laws.
Boomerang: resourceful lenses and quotient lenses.
Bidirectionalization for free.

Next lecture
XML processing with CDuce

Homework
Try out more advanced examples in Boomerang, including the
supplied examples and devising your own.

	Boomerang recap
	Mapping positions
	Normalisation
	A Third Way
	Summary

