
Regular Expression Types and Patterns in CDuce
Advances in Programming Languages

Paul McEwan (0452900)
14/03/2008

Abstract
This report examines the CDuce language, a typed functional programming language designed for
general purpose programming. Unlike other functional programming languages, CDuce
incorporates native support for XML documents in the language. This report looks at the language,
related work and then at the use of regular expression types and patterns. Specifically, how these
particular types and patterns are used to query/manipulate the XML data, as well as allow static
checking by the compiler that the XML data used is always valid.

1. Introduction
The CDuce language is a functional, typed programming language allowing the creation of general
purpose programs. The key difference between CDuce and other typed, functional programming
languages (such as Haskell and ML) is that it was designed to be used with XML from the start. The
language has features included that allow the programer to manipulate and query XML trees
directly in the code, instead of using additional tree parsers (such as Document Object Model
(DOM) parsers). The language allows for XML files to be read in or created directly in the code and
be exported back to a file. The XML handled by programs written in CDuce is guaranteed to be
valid (both well-formed/syntactically correct and corresponding to a specific structure).

Of particular interest, the CDuce language allows the inclusion of regular expressions when
defining types and patterns. The use of these regular expressions allows the programmer to not only
enquire and alter the XML, it also allows the compiler to perform checks statically on the code to
ensure the XML is valid. This report first examines the CDuce language at a high level (§2), then a
look at some related work (including languages which inspired the creation of CDuce) (§3). The use
of regular expressions in patterns and types will then be examined (§4) with an example program
created using these features of the language (§5). Finally, the report will be concluded by looking
back at the use of regular expressions in the types and patterns of the CDuce language (§6).

2. CDuce
The paper [CDuceXCGPL] presents CDuce in detail and is an ideal resource to use to understand
the language. Here, points raised in the paper shall be summarised in order to present a general
introduction to the CDuce language: what it is, how it came about and how it works.

As stated previously, the CDuce language is a typed functional programming language designed to
allow the processing of XML data directly in the language while still being a “general purpose”
language (i.e. not specific to XML processing but allowing programs to be created that include the
functionality). The CDuce project was an off-shoot extension of the XDuce language, but was
designed to be less “XML-centric”. To this effect, the CDuce language extends upon XDuce by
addressing - what the paper referred to as - limitations in three areas:

• Type System
The XDuce type system allowed the user to create types specific to dealing with XML data,
which included having “regular expression types” and “type-based patterns”. The use of the

1

former will be discussed in (§4); the latter allows the programmer to query and manipulate the
XML. However, the language only contained these XML-specific types and therefore needed
to be linked into a program written in a different high-level language in order to create more
general applications with the XML features.

CDuce was designed to still be geared towards the development of XML programs. However,
to allow more general programs to be created while still utilising the XML types created as
part of XDuce, CDuce includes additional types found in most functional languages,
including:

• “Arrow Types (T→T)” - Function type
• “Boolean Types (T&T, T|T, T\T)”
• “Records ({l(T)})”

• Language Design
CDuce was designed to include features that would be useful for both XML and general
programs. These include (from [CDuceXCGPL]) having “overloaded functions” and the
ability to iterate over sequences, as well as other extensions.

• Run-Time System
The CDuce language was designed to allow programs created with it to execute in the most
efficient manner possible. This involved the utilisation of a “new deterministic tree automata”,
as documented in [CDuceXCGPL].

Further information about the structure of the language can be found in the paper. The rest of this
section will examine how the CDuce language represents the XML data and the methods presented
to manipulate and query that data.

The XML type structure in CDuce has the following format: “<T Y> [Z]”. The T specifies to the
name of the tag the XML element must have; Y represents the attributes (zero, one or more) that the
element may or must have; Z specifies the children/content for this particular XML element. With
this type feature, it is possible to represent an XML file inside the program by creating a variable
with this type. To have a specific XML structure, the programmer defines new types using the
XML type structure corresponding to the desired XML structure (similar to creating a DTD1 for the
XML file2). The figure below better illustrate this idea3:

Here, two types are created to correspond to an XML structure. Type Car represents the root
element of the XML document, and any variables created to represent an XML file with this
structure will have this type. The Car type has a tag with the name “car” and no attributes. The
contents of the element are contained in the square brackets (referred to as the sequence); here, the

2

1 For more information about DTDs (Document Type Definition) please visit http://www.w3schools.com/dtd/
dtd_intro.asp

2 A CDuce program dtd2Cduce is available that takes a DTD and creates the corresponding CDuce types

3 Inspired by the example in [OCCDuceT]

type Car = <car> [MOT]
type MOT = <mot> [<passed> String | String]

http://www.w3schools.com/dtd/dtd_intro.asp
http://www.w3schools.com/dtd/dtd_intro.asp
http://www.w3schools.com/dtd/dtd_intro.asp
http://www.w3schools.com/dtd/dtd_intro.asp

sequence contains just one item of type MOT. This means that the root element of the XML file has
just one child, the format of which depends on the type MOT structure.

The MOT type has a tag with name “mot” and the sequence identifies that the child may take one of
two forms: a tag “<passed>” which has a child of type String (when it passed); or just a String (to
say it has not been taken). The String type is simply represented in CDuce as a list of zero or more
characters, and can be used interchangeably with the PCDATA type (corresponding to the PCDATA
item in XML).

The two figures below represent an XML document corresponding to this structure. The one on the
left is written directly into CDuce, while the right illustrates the XML file representation:

In CDuce, the variable (identified by the use of the let keyword) “doc” contains the XML data.
Looking at the left figure, the declaration of the XML document does not include any closing tags.
In CDuce, the closing tag is inferred by knowledge that everything within the square brackets is the
contents of the XML element. When a variable is declared with the root element type (or indeed,
any of the other types for the XML document) the compiler statically performs a pattern matching
check to make sure that the structure corresponds to the given types (more on this in §4).

CDuce not only provides a means by which to represent XML data within the program, it also
allows the programmer to have the XML data read in from, and written out to, an XML file. The
programmer creates a variable of the root element type as illustrated in the left hand figure above.
The command “load_xml” can then be used to load in an XML file and - provided it corresponds to
the structure defined by the types - store it in the variable4. The user can also write the XML data to
a valid XML file by using the “print_xml” command (which converts the XML data into a String in
the standard XML format) and the “dump_to_file” command (which takes the name of the file to
write to, a String containing the data to write and creates the file).

Once the XML data has been read into the program and stored into a variable of the root element
type, the programmer can use it to query and manipulate the data.

To query the XML data, the programmer can create variables or functions, whose value or
definition involves pattern matching using the XML document variable. The follow operations are
provided to allow querying:

• “/”
The “/” operator allows the programmer to
traverse the XML tree structure of the
document variable, allowing access to the
children and grandchildren. The figure on
the right illustrates a variable whose value is

3

4 Technically, the variable the XML is loaded to is actually of type “Any”. The variable has to be cast to the type of the
root element using the “:?” notation, which states that it should be cast to this type if it conforms to the structure pattern.

let doc : Car =
 <car> [
 <mot> [
 <passed> “June 2005”]]

<car>
 <mot>
 <passed> June 2005 </passed>
</mot></car>

let cString =
 [doc]/<mot> _/<passed>
_ /_

>> val cString : String =
 “June 2005”

determined by looking at the document, seeing if the root node has a “<passed>’ tag as
grandchild and appending the child to the variable if it exists. The operations result is
presented on the right of the “>>”. Note here that, not only does it correctly assign the value
“June 2005”, the compiler is able to infer the type of the variable as this is the type of the
“<passed>” child. The “_” represents the “Any” type and is used in the example to identify
the children of the XML element.

• “match … with”
This is known as the “fundamental
operation” in the CDuce language
[CDuceSE]. The role of the
operation is to actually perform
pattern matching. Given an
expression, the operation compares
the expression with a list of patterns. When the first pattern is found that matches the
expression, a corresponding expression is fired. An example of this operation is presented to
the right. Here, since the sequence contains three Strings (“car”, “bus” and “bike”), the second
pattern is matched as the first requires four elements. The sub-sequence of the first two
elements is returned. The “::” operand is discussed later.

• “map … with”
The “map … with” operation is a
basic pattern matching operation
that attempts to match the
expression (converted into a
sequence) with a list of patterns. A
sequence is returned which attempts
to map each item input sequence with the expression in the matched patterns [CDuceSE]. An
example of it’s use is given to the right. In the example, the function takes in a variable of the
root element type, extracts the child information and then maps it with the structure of a
“<mot>” tag with either a “<passed>” tag child and string grandchild or a string child. The
String child/grandchild in a list is then returned. Using the function with the XML document
variable produces a list containing just the“June 2005” String.

• “transform … with”
The “transform … with” operation is
similar to the “map … with”
operation (and indeed can be created
using this operator [CDuceSE]). The
essential difference is the returned
sequence does not have to be the
same length as the input sequence.
The example to the right illustrates the use of the transform operation to obtain the String item
associated with either the “<passed>” element’s child or the “<mot>” element’s child.

• “&”
This operator is a Boolean connective that allows the binding of two patterns or types

4

let rootChildren (Car -> [String])
 <car> x -> map x with
 <mot>[(<passed> s) | (s)] -> s

let rC = rootChildren doc

>> val rC : [String] = ["June 2005"]

let rootChildren (Car -> String)
 <car> x -> transform x with
 <mot>[(<passed> s) | (s)] -> s

let rC = rootChildren doc

>> val rC : String = "June 2005"

match ["car" "bus" "bike"] with
 [_ x :: (_ _ _)] -> x
 | [x :: (_ _) _] -> x

>> [[‘car’] [‘bus’]] = [“car” “bus”]

together5. The most common use for the operator
is to append the result of one pattern to another. In
the example on the left,
the “&” operator is used to map the “x” pattern
with the pattern of second element of the list
(“bus”). The “x” is an empty variable and matches

anything, hence why the pattern is matched against it.

• “::”
This final operator is similar to the
“&” operator. However, where the
previous operator only works with
single patterns, the “::” operator
works on sub-sequences. As
before, the most common usage in CDuce is to use the operator to bind a sub-sequence to a
variable. The example on the right is a modified form of the previous example using this
operator. Here, the “x” pattern is bound to the sub-sequence of the list that includes the final
two elements (“bus” and “bike”).

Having looked at ways by which to query the XML data in CDuce, the final area to examine is
ways in which the programmer may manipulate and alter the data in the XML file. The operators
defined already may be used to produce these results, but the key is how they are used. The
following example illustrates how to manipulate XML data. Imagine the following documents have
been declared:

A programmer may wish to manipulate the “mot” element, changing the contents to identify the car
has passed it’s MOT and when (or, updating the last date when the car passed it’s MOT). The
following function can be created:

The function takes an XML document (variable with root element type), a string representing the
new passed date and returns an item of the root element type. The function then pattern matches to
decide how to update: if the car previously passed an MOT then the string child of “<passed>” is
updated; else the “<mot>” element has a “<passed>” element added containing the new passed

5

5 CDuce also contains the Boolean connectives “|” and “\”. “|” is the disjunction connective: when used with types
accepts the values that accept both types; when used with patterns accepts value of either the left or right hand pattern
(if value is matched by both, the value is matched to the left pattern). “\” is known as the difference connective and
allows the left hand side to be either a pattern or a type but the right hand side must be a type. [CDuceSTP]

match ["car" "bus" "bike"] with
 [_ x::(_ _)] -> x

>> [[‘bus’][‘bike’]] = [“bus” “bike”]

let doc : Car =
 <car> [
 <mot> [
 <passed> “June 2005”]]

let doc2 : Car =
 <car> [
 <mot> [
 “Not Taken”]

let updateMOTPass (oDoc : Car) (nDate : String) : Car =
 match oDoc with
 <car>[<mot> [<passed> _]] -> <car>[<mot>[<passed> nDate]]
 | <car>[<mot> [_]] -> <car>[<mot>[<passed> nDate]]

match ["car" "bus" "bike"] with
 [_ x & (_) _] -> x

>> [‘bus’] = “bus”

date6. Since the function returns an item of the root element type, we can reassign this to the
original variable to update the XML data:

The XML data stored in the two variables “doc” and “doc2” has therefore been altered to update the
last time the cars passed their MOTs.

3. Related Work
The foremost work related to the CDuce language is on XDuce, of which CDuce was an extension
(as discussed in the previous section). Consulting [CDuceXCGPL], the paper identifies two
particular projects that were inspired by XDuce:

• Xtatic
Xtatic [XtaticS] is very similar to CDuce in that both projects are attempts to integrate the
useful features of XDuce into general purpose languages, for the creation of general purpose
programs which allow native processing of XML data. Both languages attempt to do this
through the use of regular expression patterns and types. Unlike CDuce, Xtatic was not
designed to be a stand-alone functional programming language, but rather as an extension for
C#. Therefore, Xtatic follows an object-oriented approach and can be used natively as part of
any C# program.

• XQuery
Designed primarily for querying XML, the type system designed for XQuery [XQueryS] was
based upon the one used in XDuce (as with CDuce). The method used to make an XML query
is similar in XQuery to that of CDuce and includes support for XPath [CDuceXCGPL].
Unlike CDuce, XQuery does not have regular expression patterns or structural typing
[CDuceXCGPL].

More information regarding related work may be found in [CDuceXCGPL] and [CDuceSR].

4. Regular Expressions in Types and Patterns
Having looked at the CDuce language and related work, this section will examine the use of and
reasons for the inclusion of regular expressions in both patterns and types. The next section presents
example code containing types and patterns that utilise these regular expressions.

The regular expression operators used in the CDuce language are:
• “?” - zero or one items
• “+” - one or more items
• “*” - zero or more items

6

6 Note that this could have been simplified to the one pattern matching expression “<car>[<mot> [_*]] ->
<car>[<mot>[<passed> nStr]]” (since the resulting expression is the same despite the input pattern).

let doc = updateMOTPass doc “March 2008”
>>doc : Car = <car>[<mot>[<passed>['March 2008']]]
let doc2 = updateMOTPass doc “January 2007”
>>doc2 : Car = <car>[<mot>[<passed>['January 2007']]]

These regular expression operators are used in XML and retain the same meaning. These operators
are referred to as “greedy” operators that attempt to match with as many items as possible
[CDuceXCGPL]. Non-greedy variants are constructed by placing a “?” suffix to the operator7.

The inclusion of regular expressions in the type system of CDuce follows a similar reasoning as that
for the inclusion of regular expressions in DTDs. The type system, when used to define XML
elements, allows the structure of acceptable documents to be defined in advance. This enforcement
of a structure allows for consistency in XML documents which conform to this structure, and
ensures that valid XML documents used in operations cause expected results to be produced.
However, it may be desirable to define the structure of a valid XML document but allow some
flexibility for exact numbers. For example, an XML document containing vehicle information may
contain “car” elements. Stating an exact number of car elements allowed would not be appropriate,
as the initial document to be written could need to contain more or less cars than the definition
allowed for. Furthermore, modification to a different number would be impossible. Regular
expressions allow the definition to state a particular structure but allow flexibility. For example, the
vehicle definition could state there can be zero or more cars. Another example would be that an
owner may have more than one vehicle, so a regular expression stating “(car | bike | lorry)*” could
be used to say that the owner as zero or more of any of the given vehicles.

When the CDuce definition of the type - containing regular expressions - is compiled, the type is
represented internally as a recursive pattern. When a variable of the given type is declared, the
definition used (either explicitly in the CDuce code or read from a file) is pattern matched against
the associated recursive pattern. If the pattern matching fails, the definition did not conform to the
structural definition for an XML document of this type (i.e. it may be well-formed but is not valid).
The compiler will either throw an error (if the definition was stated explicitly in the program) or
assign the variable the type “Any”, if read in from the file8.

The inclusion of regular expressions in the type definition therefore provide the same advantages as
using them in a DTD: namely, the programmer can state the formal structure for a valid XML
document for the program purposes which guarantees that valid documents will be used in
operations but is not so rigid as to restrict the data that is contained in the document.

When constructing patterns as part of pattern matching, CDuce allows the construction of regular
expression patterns, which can be used to pattern match against types that use regular expressions.
This allows the programmer to write queries and manipulation functions which can use XML data
that utilises the use of regular expressions when defining it’s type structure. Although the general
structure of the XML file is known, the exact layout of the particular XML data may not be known.
Regular expressions in patterns can therefore capture this uncertainty, in effect allowing the
programmer to assert “there will be some number of these, the exact number is unknown, but it will
be roughly this”. It is also possible for the programmer to bind a regular expression pattern to a

7

7 The difference between greedy and non-greedy versions is documented in [CDuceXCGPL]. Essentially, the difference
comes from the structure of the internal pattern used for the internal representation of the expression. For greedy
expressions, the internal pattern places the pattern to match on the left of the “|” operator(meaning it is evaluated first),
while the non-greedy version places it on the right.

8 This highlights a slight limitation of CDuce. Since it is not possible to explicitly assign the root element type to an
XML document that has been read in (see footnote 4), non-valid documents may be read in and assigned to variables.
However, these will cause the program to fail if used in a function that expected the variable to be of the root element
type.

variable using a “sequence capture variable” which is structured as “x::(regular expression
pattern)”.

Internally, these regular expression patterns are converted by the compiler into a recursive pattern.
For example, if a regular expression pattern states that, for some type “Owner”, there can be one or
more occurrences, a pattern of the form “P = (p & Owner, Q) | (_ , P) and Q = (p & Owner, Q) | (p
& nil)” would be created. The pattern binds the occurrences of “Owner” to some sequence variable
“p”, with the “nil” pattern used to signal the end of the sequence9.

5. Example
The example code written here can be copied into the online CDuce interpreter [CDuceOP] and run
to see the results10. To allow the reader to see the results of CDuce programming without the need
to install the interpreter on their home machine, the code only uses functionality available on the
online interpreter and does not include code saving the XML to a file or loading from a file.

The example CDuce file was inspired by the example used in [CDuceXCGPL] (§2). The example
illustrates how an XML document containing vehicle information stored as part of the DVLA
records can be represented and instantiated in a CDuce program, with regular expressions used in
the type definitions for the XML. Finally, functions and variables are defined which contain
patterns that query the XML for information. The example will be divided into steps to illustrate the
approach used to create the program. The code for each step will be presented within a boxed area.

Step 1 - Create the Types
The first step involves creating the types for the XML model. The code for the type declarations is
as follows:

8

9 Inspired by an example in [CDuceXCGPL] (§3.6)

10 A slight problem was noticed when running the code, copied directly from the word processor, into the prototype
interpreter. The open quote character (“) was not recognised correctly. Re-typing the quotes in the interpreter fixes this
problem.

(* DVLARecord contains zero or more vehicles*)
type DVLARecord = <dvla> [Vehicle*]
(* A vehicle has an attribute stating whether car or motor bike, another
stating whether taxed or not. It has as children one or more owners and
a registration number *)
type Vehicle = <vehicle vehType=(”car”|”mbike”) taxed=("yes" | "no")>
 [Owner+ Reg]

(*An owner has a name and may have multiple addresses or telephone
numbers*)
type Owner = <owner> [Name (Address | Tel)*]
(*Registration number has one or more letters followed by either a "-"
number "-" letter or just "-" letter*)
type Reg = <reg> [('A'--'Z')+ ('-' ('0'--'9'))? '-' 'A'--'Z']

(*Name is just text*)
type Name = <name> [PCDATA]
(*Address has either a number and street name or just a name*)
type Address = <addr> [(0--* Name | Name)]
(*Telephone number has some numbers, possibly separated by dashes*)
type Tel = <phone> [0--*]

Regular expressions have been used throughout these type declarations. The “DVLARecord” type
(type root element) states that the XML can contain zero or more occurrences of vehicles. The
“Car” and “MotorBike” types contain a regular expression stating that there may be one or more
owners.

Step 2 - Create an XML document using the defined types
The next step is to create a new variable that will represent the XML document conforming to the
structure defined in the type definitions. The code for the XML definition for this example will be
the following:

9

let doc : DVLARecord =
 <dvla> [<vehicle vehType=”car” taxed="yes"> [
 <owner> [
 <name> ['Tim']
 <addr> [123 <name>['Edin']]
 <phone> [12345]]
 <reg> ['ABC-Z']]
 <vehicle vehType=”car” taxed="yes"> [
 <owner> [
 <name> ['Kim']
 <addr> [153 <name>['Glas']]
 <phone> [14656]]
 <owner> [
 <name> ['Tim']
 <addr> [123 <name>['Edin']]
 <phone> [12345]]
 <reg> ['ABC-3-Z']]
 <vehicle vehType=”mbike” taxed="no"> [
 <owner> [
 <name> ['Jim']
 <addr> [<name>['RichPlace']]
 <addr> [123 <name>['RicherPlace']]
 <phone> [32156]]
 <reg> ['ABR-6-Z']]
]

Step 3 - Query the XML
Now that an XML document has been created, functions will be created to query the XML to
discover information regarding untaxed vehicles. The following functions are defined:

When the functions are applied to the XML document defined in the first step, the following
information is returned:

Jim will probably be getting a call from the DVLA very soon!

6. Conclusion
The CDuce language was developed to be a general purpose language which was tailored for the
development of XML programs. Extending the XML type system developed in XDuce, CDuce
allows programmers to create programs that treat XML data as types, allowing manipulation and
querying to be performed in a manner familiar to a functional programmer.

The inclusion of regular expression types and patterns allows not only the programmer to create,
query and manipulate complex XML structures with ease, but their inclusion also facilitates the
compiler in identifying valid XML data. The types and patterns that utilise regular expressions are
converted into recursive patterns by the compiler, with values that use these patterns or types
pattern matched against these internal patterns.

Overall, CDuce is an ideal platform for the development of XML and XML based applications. The
type and pattern systems guarantee statically valid XML. This guarantee allows XML data to be
used or transferred between sources and still retain its meaning. It also guarantees that functions
written to query the XML behave as expected and return only valid results.

10

(* The first function returns the names of drivers with untaxed
vehicles. When extracting the owners, the “+” operator is used to
create a regular expression stating each vehicle may have more than one
owner. The compiler knows this from the type definition and will throw
an error if simply the variable ‘o’ is used*)
let getUntaxedNames (DVLARecord -> [Name*])
 <dvla> x
 -> transform x with <vehicle taxed=y ..> [o::(Owner+) _*]
 -> if y="no" then (map o with <owner>[n _*] -> n) else []

(* This second function returns the owners of untaxed vehicles numbers.
The regular expression for owner is repeated here. This time, another
regular expression is used to append all the possible phone numbers to
t (which may be zero or more)*)
let getUTPhoneNumbers (DVLARecord -> [Tel*])
 <dvla> x
 -> transform x with <vehicle taxed=y ..> [o::(Owner+) _]
 -> if y="no" then (transform o with <owner>[_ (t::Tel | _)*]
 -> t)
 else []

let untaxedName = getUntaxedNames doc
>> val untaxed : [Name*] = [<name>['Jim']]

let utPhoneNum = getUTPhoneNumbers doc
>> val utPhoneNum : [Tel*] = [<phone>[32156]]

Bibliography
The following resources were used and consulted while researching for this report:
[CDuceSite] http://www.cduce.org/ - CDuce home page11

[CDuceOP] http://reglisse.ens.fr/cgi-bin/cduce - CDuce online prototype interpreter
[CDuceXCGPL] CDuce: An XML-Centric General-Purpose Language - CDuce paper
[CDuceGREM] Greedy regular expression matching - CDuce Paper
[CDuceEMREP] Error Mining for Regular Expression Patterns - CDuce paper
[OCCDuceT] http://www.ocaml-tutorial.org/manipulating_xml_documents_with_cduce -
Manipulating XML file with CDuce
[CDuceSTP] http://www.cduce.org/manual_types_patterns.html - CDuce page on types and
patterns
[CDuceSE] http://www.cduce.org/manual_expressions.html - CDuce page on expressions
[CDuceSR] http://www.cduce.org/#research - CDuce page (regarding the research project)
[XtaticS] http://www.cis.upenn.edu/~bcpierce/xtatic/ - Xtatic Home page
[XQueryS] http://www.w3.org/TR/xquery/ - XQuery 1.0: An XML Query Language

11

11 As an interesting note, the CDuce website itself is generated by a CDuce program generating XML in the format of
XHTML

http://www.cduce.org
http://www.cduce.org
http://reglisse.ens.fr/cgi-bin/cduce
http://reglisse.ens.fr/cgi-bin/cduce
http://www.cduce.org/papers/cduce-design.ps.gz
http://www.cduce.org/papers/cduce-design.ps.gz
http://www.cduce.org/papers/icalp04.pdf
http://www.cduce.org/papers/icalp04.pdf
http://www.cduce.org/papers/error_mining.pdf
http://www.cduce.org/papers/error_mining.pdf
http://www.ocaml-tutorial.org/manipulating_xml_documents_with_cduce
http://www.ocaml-tutorial.org/manipulating_xml_documents_with_cduce
http://www.cduce.org/manual_types_patterns.html
http://www.cduce.org/manual_types_patterns.html
http://www.cduce.org/manual_expressions.html
http://www.cduce.org/manual_expressions.html
http://www.cduce.org/#
http://www.cduce.org/#
http://www.cis.upenn.edu/~bcpierce/xtatic/
http://www.cis.upenn.edu/~bcpierce/xtatic/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

