
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL9: Monads and I/O

Ian Stark

School of Informatics
The University of Edinburgh

Monday 8 February
Semester 2 Week 5

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Foreword

Some Types in Haskell

This is the third of four lectures about some features of types and typing
in Haskell types, specifically:

Type classes

Multiparameter type classes, constructor classes,

Monads and interaction with the outside world

Encapsulating stateful computation

Ian Stark APL9 2010-02-08



Foreword

Some Types in Haskell

This is the third of four lectures about some features of types and typing
in Haskell types, specifically:

Type classes

Multiparameter type classes, constructor classes,

Monads and interaction with the outside world

Encapsulating stateful computation

Ian Stark APL9 2010-02-08



Outline

1 Types for Imperative Features

2 Programming with Monads

3 I/O in Functional Languages

4 Challenges

5 Closing

Ian Stark APL9 2010-02-08



Maybe type

Haskell has a standard type constructor for describing optional values.

data Maybe a = Nothing | Just a −− Datatype declaration

isJust :: Maybe a −> Bool −− Some example operations
isNothing :: Maybe a −> Bool −− from the Data.Maybe library

instance Functor Maybe where −− Remember constructor classes
fmap f Nothing = Nothing −− from the last lecture?
fmap f (Just x) = (Just (f y)) −− etc. etc.

The Maybe type encapsulates an optional value. A value of type Maybe a
is either empty (Nothing) or contains a value x of type a (Just x).

For example, functions can indicate potential failure by returning a result
of Maybe type.

Ian Stark APL9 2010-02-08



Example Maybe computations

−− Prepare a list of numbers in a given range, if suitable
f :: Int −> Int −> Maybe [Int]
f n m = if n <= m then Just [n..m] else Nothing

−− Extract an even number, if any
g :: [Int] −> Maybe Int
g xs = case filter even xs of

[] −> Nothing
(y:ys) −> Just y

−− Present as a string, if not too long
h :: Int −> Maybe String
h x = let s = show x in if length s < 4 then Just s else Nothing

Ian Stark APL9 2010-02-08



Chaining Maybe computations

−− Do all three, one after another
getSmallEven :: Int −> Int −> Maybe String
getSmallEven p q = case f p q of

Nothing −> Nothing
Just xs −>

case g xs of
Nothing −> Nothing
Just y −> h y

This will return an even number between p and q as a string of no more
than three characters, if possible.

Ian Stark APL9 2010-02-08



A combinator to chain Maybe computations

We can capture this pattern of chaining Maybe-functions with a suitable
higher-order function.

andThenMaybe :: Maybe a −> (a −> Maybe b) −> Maybe b
andThenMaybe (Just x) f = f x
andThenMaybe Nothing f = Nothing

getSmallEven’ :: Int −> Int −> Maybe String
getSmallEven’ p q = f p q ‘andThenMaybe‘ g ‘andThenMaybe‘ h

Here andThenMaybe acts as a combinator on computations.

Ian Stark APL9 2010-02-08



Perhaps extending Maybe

We can extend the Maybe type to our own Perhaps type, which carries
either a value, or an explanation for the absence of a result.

data Perhaps a = Valid a | Invalid String
deriving Show

isValid :: Perhaps a −> Bool −− Some suitable
isInvalid :: Perhaps a −> Bool −− operations
reason :: Perhaps a −> Maybe String

instance Functor Perhaps where −− This is a
fmap f (Valid x) = Valid (f x) −− functor too
fmap f (Invalid s) = Invalid s

Ian Stark APL9 2010-02-08



Example Perhaps computations

−− Prepare a list of numbers in a given range, if suitable
f :: Int −> Int −> Perhaps [Int]
f n m = if n < m then Valid [n..m] else Invalid "Not valid range"

−− Extract an even number, if any
g :: [Int] −> Perhaps Int
g xs = case filter even xs of

[] −> Invalid "No even numbers in list"
(y:ys) −> Valid y

−− Present as a string, if not too long
h :: Int −> Perhaps String
h x = let s = show x

in if length s < 4 then Valid s else Invalid "String too long"

Ian Stark APL9 2010-02-08



Chaining Perhaps computations

−− Do all three, one after another
getSmallEven :: Int −> Int −> Perhaps String
getSmallEven p q = case f p q of

Invalid e −> Invalid e
Valid xs −>

case g xs of
Invalid e −> Invalid e
Valid y −> h y

This will return an even number between p and q as a string of no more
than three characters; or an explanation why not.

Ian Stark APL9 2010-02-08



A combinator to chain Perhaps computations

As before, a suitable combinator can capture the work needed to chain
together computations.

andThenPerhaps :: Perhaps a −> (a −> Perhaps b) −> Perhaps b
andThenPerhaps (Valid x) f = f x
andThenPerhaps (Invalid e) f = Invalid e

getSmallEven’ :: Int −> Int −> Perhaps String
getSmallEven’ p q = f p q ‘andThenPerhaps‘ g ‘andThenPerhaps‘ h

Note that the code for the final program getSmallEven’ is now just the
same as it was for the Maybe computations.

Ian Stark APL9 2010-02-08



Monads

Both Maybe a and Perhaps a present an enriched form of value type a,
adding extra “computational” information: a monad. [Moggi ’88, Wadler ’92]

class Monad m where −− See the Haskell 98
(>>=) :: m a −> (a −> m b) −> m b −− report for full details
return :: a −> m a −− of the Monad class

instance Monad Maybe where | instance Monad Perhaps where
Just x >>= f = f x | Valid x >>= f = f x
Nothing >>= f = Nothing | Invalid e >>= f = Invalid e
return x = Just x | return x = Valid x

getSmallEven p q = f p q >>= g >>= h

Ian Stark APL9 2010-02-08

http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/index.html
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/143165.143169


More and more monads

Many other type constructors wrap up general kinds of “computation” as
a monad. All have associated return and chaining >>= operations.

data Exceptional e a = Result a | Exception e

type State s a = s −> (s,a) −− Pass on a mutable value of type s

type Environment e a = e −> a −− Look up in an environment of type e

type Printing a = (String,a) −− Build up a String of output

type Read i a = [i] −> ([i],a) −− Read values from list, pass what’s left

type NonDeterministic a = [a] −− Generate one, none, or many results

Exercise: Complete these as datatype declarations and Monad instances, then test them in GHC

Ian Stark APL9 2010-02-08



Get more for your monad

Advantages of monads

Separate the plumbing infrastructure from the code proper
Code becomes independent of which monad is being used.
Features can be added to the monad without changing client code.

Other monad applications

Monads encapsulate code, which can be used for more than just execution.

Parsers
Interpreters
Exact real arithmetic
Infinite search in finite time
Metaprogramming

Ian Stark APL9 2010-02-08



Why wrap things up?

Why not use the real state?

Monads capturing imperative programming might look like too much hard
work. Why not just add real read/write and I/O operations to Haskell?

Feature interaction: impurity is pervasive, and changes all other
language properties.
Laziness: imperative effects depend on evaluation order.
Real state isn’t real anyway: caching, multicore, virtual machines.

In the end, we want the compiler to have as much information, and as
much freedom to work, as possible.

In practice, standard rewriting and liveness analysis can mean that
straight-line use of the state monad maps to direct use of memory anyway.

Ian Stark APL9 2010-02-08



Outline

1 Types for Imperative Features

2 Programming with Monads

3 I/O in Functional Languages

4 Challenges

5 Closing

Ian Stark APL9 2010-02-08



Sweetening monads

Haskell provides syntactic sugar for writing monadic code.

f :: Int −> Int −> Perhaps [Int] −− List the range, if possible

g :: [Int] −> Perhaps Int −− Extract an even number, if any

h :: Int −> Perhaps String −− As a string, if not too long

getSmallEven :: Int −> Int −> Perhaps String
getSmallEven p q =

do range <− f p q −− The Perhaps monad
evenNumber <− g range −− ensures that any
stringForm <− h evenNumber −− error message makes
return stringForm −− it through to the end

Ian Stark APL9 2010-02-08



Monadic syntax for everything

The do-notation works with any monad: lists, for example.

> do { x <− [1,2,3]; return (2∗x); }
[2,4,6]

> do { x <− [1,2,3]; y <− [’a’,’b’]; return (x,y); }
[(1,’ a ’),(1,’ b ’),(2,’ a ’),(2,’ b ’),(3,’ a ’),(3,’ b’)]

As a program-control mechanism, this captures backtracking. However, it
also works as an alternative to list comprehension.

This in turn leads to the notion of monad comprehension

Ian Stark APL9 2010-02-08



Outline

1 Types for Imperative Features

2 Programming with Monads

3 I/O in Functional Languages

4 Challenges

5 Closing

Ian Stark APL9 2010-02-08



Routes to Input/Output

Back in the day, there were many solutions to getting functional languages
to interact with the world outside.

Side effects: just let it all happen
As used in Lisp and Standard ML, but breaks purity and laziness.

Stream transformers: Program :: [Request] −> [Response]
Uses infinite lists and sincere laziness. Liable to deadlock.

Continuation passing: type Compute a = forall b . (a −> b) −> b
Tremendously powerful, but inverts all control (and intuition).

Andrew D. Gordon.
Functional Programming and Input/Output.
Distinguished Dissertations in Computer Science. Cambridge
University Press, 1994.

Ian Stark APL9 2010-02-08

http://research.microsoft.com/en-us/um/people/adg/Publications/fpio.html


One monad to rule them all

The arrival of monads in Haskell changed all of this, overnight.

In particular, the IO monad handles all interaction with the outside world.

main :: IO t −− Main program to execute

putChar :: Char −> IO () −− Output to terminal
print :: Show a => a −> IO ()

getLine :: IO String −− Read from terminal
readFile :: FilePath −> IO String −− or arbitrary file

Over time, the IO monad has accumulated everything too impure to be in
the language itself.
Dorian Gray had his picture; Haskell has the IO monad.

[Wilde, 1891]

Ian Stark APL9 2010-02-08



One monad to rule them all

The arrival of monads in Haskell changed all of this, overnight.

In particular, the IO monad handles all interaction with the outside world.

ioError :: IOError −> IO a −− Raise exception
catch :: IO a −> (IOError −> IO a) −> IO a −− Handle exception

getArgs :: IO [String] −− initial program arguments
system :: String −> IO ExitCode −− call external program

getCPUTime :: IO Integer −− picoseconds of CPU time used

Over time, the IO monad has accumulated everything too impure to be in
the language itself.
Dorian Gray had his picture; Haskell has the IO monad.

[Wilde, 1891]

Ian Stark APL9 2010-02-08



One monad to rule them all

The arrival of monads in Haskell changed all of this, overnight.

In particular, the IO monad handles all interaction with the outside world.

ioError :: IOError −> IO a −− Raise exception
catch :: IO a −> (IOError −> IO a) −> IO a −− Handle exception

getArgs :: IO [String] −− initial program arguments
system :: String −> IO ExitCode −− call external program

getCPUTime :: IO Integer −− picoseconds of CPU time used

Over time, the IO monad has accumulated everything too impure to be in
the language itself.
Dorian Gray had his picture; Haskell has the IO monad.

[Wilde, 1891]

Ian Stark APL9 2010-02-08



One monad to rule them all

The arrival of monads in Haskell changed all of this, overnight.

In particular, the IO monad handles all interaction with the outside world.

ioError :: IOError −> IO a −− Raise exception
catch :: IO a −> (IOError −> IO a) −> IO a −− Handle exception

getArgs :: IO [String] −− initial program arguments
system :: String −> IO ExitCode −− call external program

getCPUTime :: IO Integer −− picoseconds of CPU time used

Over time, the IO monad has accumulated everything too impure to be in
the language itself.
Dorian Gray had his picture; Haskell has the IO monad.

[Wilde, 1891]
Ian Stark APL9 2010-02-08



Metaprogramming

Working with monads introduces a level of metaprogramming: the
programmer can alternate between writing code inside the monad; and
high-level manipulation outside it.

sequence :: Monad m => [m a] −> m [a]

liftM :: (Monad m) => (a −> b) −> (m a −> m b)

zipWithM :: (Monad m) => (a−>b−>m c) −> [a]−>[b]−>m [c]

filterM :: Monad m => (a −> m Bool) −> [a] −> m [a]

An expression of type IO a is a computation which when executed will
return a value of type a.

An interactive Haskell program defines a computation, of type IO a;
running the program performs that computation.

Ian Stark APL9 2010-02-08



How the world was made

If Haskell is pure, then how does the IO monad work?

data World = ...

type IO a = World −> (World, a)

Strict typing, and the lack of any constructors for the World datatype,
mean that the World must be single-threaded, not duplicated or destroyed,
through any computation IO a.

This is preserved through extensive program rewriting and optimization,
down to the compiled code. Only a single, mutable, value of type World is
ever required: conveniently, exactly one is available, and can be efficiently
updated in-place.

The philosophers have only interpreted the world in various ways —

the point however is to change it. [Marx, 1845]

Ian Stark APL9 2010-02-08



Outline

1 Types for Imperative Features

2 Programming with Monads

3 I/O in Functional Languages

4 Challenges

5 Closing

Ian Stark APL9 2010-02-08



More to do

Challenges

Combining monads: monad transformers, layering
Monolithic: how to modularise IO
Explicit: smoother integration? Monad inference?

Future directions

Arrows, idioms
Operations and algebraic effects
Effect types, effect inference
. . .

Ian Stark APL9 2010-02-08



Outline

1 Types for Imperative Features

2 Programming with Monads

3 I/O in Functional Languages

4 Challenges

5 Closing

Ian Stark APL9 2010-02-08



Homework

Reading

For Thursday, read the following.

Simon L. Peyton Jones and Philip Wadler.
Imperative Functional Programming
In Conference Record of the Twentieth Annual ACM Symposium on
Principles of Programming Languages, POPL ’93, pages 71–84. ACM
Press, 1993.

Homework

Find an online tutorial or other explanation of monads in programming,
and post a link on the blog. Write a comment reviewing whether you
found the explanation helpful, or otherwise. Bonus points if the language
is not Haskell.

Ian Stark APL9 2010-02-08

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/158511.158524


Further Reading

Simon Peyton Jones.
Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell
Presented at the 2000 Marktoberdorf Summer School. In Engineering
Theories of Software Construction, pages 47–96. IOS Press, 2001.
Latest version, January 2009, available online at http://research.
microsoft.com/en-us/um/people/simonpj/Papers/marktoberdorf/

Oscar Wilde.
The Picture of Dorian Gray.
Ward Lock & Co, London, 1891
Available from Project Gutenberg
http://www.gutenberg.org/etext/174

Ian Stark APL9 2010-02-08

http://research.microsoft.com/en-us/um/people/simonpj/Papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/Papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/Papers/marktoberdorf/
http://research.microsoft.com/en-us/um/people/simonpj/Papers/marktoberdorf/
http://www.gutenberg.org/etext/174
http://www.gutenberg.org/etext/174


References

Eugenio Moggi.
Computational Lambda-Calculus and Monads
Technical Report ECS-LFCS-88-66, Laboratory for Foundations of
Computer Science. Edinburgh, 1988.

Phil Wadler.
The Essence of Functional Programming
In Conference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages POPL ’92, pages 1–14. ACM Press, 1992.

Ian Stark APL9 2010-02-08

http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/index.html
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/143165.143169

	Types for Imperative Features
	Programming with Monads
	I/O in Functional Languages
	Challenges
	Closing

