
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL7: Haskell, Types and Classes

Ian Stark

School of Informatics
The University of Edinburgh

Monday 1 February
Semester 2 Week 4

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Foreword

Some Types in Haskell

This is the first of four lectures about some features of types and typing in
Haskell types, specifically:

Type classes

Constructor classes, multiparameter type classes

Monads and interaction with the outside world

Encapsulating stateful computation

Ian Stark APL7 2010-02-01

Outline

1 Types

2 Types in Object-Oriented Languages

3 Haskell Curry

4 Type Classes in Haskell

5 Examples of Haskell Type Classes

6 Closing

Ian Stark APL7 2010-02-01

Some types

A selection of types from some languages.

C/C++

int, long, float, unsigned int, char
int [], char∗, char&, int(∗)(float,char)

OCaml

int , int64, bool, char, string, unit
string∗string, int list , bool array
int−>int, int−>string−>char, ’a list −> ’a list

Java

Object, byte[], boolean
StringBuffer, LinkedList, TreeSet, ArrayList<String>
IllegalPathStateException, BeanContextServiceRevokedListener

Ian Stark APL7 2010-02-01

What do people do with types?

Type checking
Static type checking
Dynamic type checking
Type annotation
Type inference
Structural typing
Nominative typing

Subtyping
Duck typing
Effect types
Soft typing
Gradual typing
Dynamic types
Blame typing

Ian Stark APL7 2010-02-01

What is a type system?

A type system is a well-defined subset T of programs such that:

P ∈ T =⇒ Execute(P) |= φ

(read: “if P is in T then Execute(P) satisfies φ”)

where Execute(P) is the behaviour of P when (compiled and) run, and φ is
some desired property of that behaviour.

For example,

T = “well-typed Java programs”
φ = “methods are always correctly invoked”

Slogan: Well-typed programs cannot go wrong. [Robin Milner, 1978]

Ian Stark APL7 2010-02-01

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1016/0022-0000(78)90014-4

Read on to find out more. . .

Benjamin C. Pierce.
Types and Programming
Languages.
MIT Press, 2002.

Ian Stark APL7 2010-02-01

http://www.cis.upenn.edu/~bcpierce/tapl/index.html
http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cis.upenn.edu/~bcpierce/tapl/

. . . and lots more

Benjamin C. Pierce, editor.
Advanced Topics in Types
and Programming
Languages.
MIT Press, 2005.

Ian Stark APL7 2010-02-01

http://www.cis.upenn.edu/~bcpierce/attapl/
http://www.cis.upenn.edu/~bcpierce/attapl/
http://www.cis.upenn.edu/~bcpierce/attapl/
http://www.cis.upenn.edu/~bcpierce/attapl/

Outline

1 Types

2 Types in Object-Oriented Languages

3 Haskell Curry

4 Type Classes in Haskell

5 Examples of Haskell Type Classes

6 Closing

Ian Stark APL7 2010-02-01

Java

Java is serious about abstraction

Java works almost entirely through class-based object-oriented
programming; it encourages the use of abstract classes through inheritance
and interfaces; and it does not expose the private workings of classes and
packages.

Java is serious about typing

Java has strong static typing: all programs are checked for
type-correctness at compile-time. Bytecode is checked again when classes
are loaded, by the bytecode verifier, before execution. The introduction of
generics extended the power of the type system.

Even so, things do not always go as well as one might hope...

Ian Stark APL7 2010-02-01

Recall subtyping

Subtyping is a well-established part of the object-oriented paradigm: an
object in a subclass can stand in for an object in a superclass.

Sometimes known as Liskov’s principle of substitutivity:

properties that can be proved using the specification of an object’s
presumed type should hold even though the object is actually a subtype
of that type [Liskov and Wing, 1994]

We have already seen this in the context of program specification and
verification.

Ian Stark APL7 2010-02-01

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/197320.197383

Subtyping arrays in Java

Java has subtyping: a value of one type may be used at any more general
type. So String 6 Object, and every String is an Object.

Not all is well with Java types

String[] a = { "Hello" }; // A small string array
Object[] b = a; // Now a and b are the same array
b[0] = Boolean.FALSE; // Drop in a Boolean object
String s = a[0]; // Oh, dear
System.out.println(s.toUpperCase()); // This isn’t going to be pretty

This compiles without error or warning: in Java, if S 6 T then S[] 6 T[].

Except that it isn’t. So every array assignment gets a runtime check.

Ian Stark APL7 2010-02-01

Subtype variance

The issue here is with parameterized types like String[] and List〈Object〉;
or in Haskell Maybe a and (a,b)−>(b,a).

Suppose some type A〈X〉 depends on type X, and types S 6 T. Then the
dependency is:

Covariant if A〈S〉 6 A〈T〉 e.g. pair A〈X〉= X ∗ X

Contravariant if A〈S〉 > A〈T〉 e.g. test A〈X〉= X→bool

Invariant if neither of these holds. e.g. array A〈X〉= X[]

For example, in the Scala language, type parameters can be annotated
with variance information: List[+T], Function[−S,+T].

In Java, arrays are typed as if they were covariant. But they aren’t.
see also parameter covariance in Eiffel

Ian Stark APL7 2010-02-01

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and
(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

Ian Stark APL7 2010-02-01

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and

(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

Ian Stark APL7 2010-02-01

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and
(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

Ian Stark APL7 2010-02-01

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and
(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

Ian Stark APL7 2010-02-01

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and
(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

Ian Stark APL7 2010-02-01

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and
(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

Ian Stark APL7 2010-02-01

Really, it’s not

W. R. Cook.
Interfaces and specifications
for the Smalltalk-80
collection classes.
Proc. OOPSLA ’92,
pp. 1–15.

W. R. Cook, W. Hill, and
P. S. Canning.
Inheritance is not subtyping.
Proc. POPL ’90,
pp. 125–135.

Ian Stark APL7 2010-02-01

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/141936.141938
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/141936.141938
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/141936.141938
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/96709.96721

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and
(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance;

it’s also extremely hard to get right.

Ian Stark APL7 2010-02-01

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and
(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance;
it’s also extremely hard to get right.

Ian Stark APL7 2010-02-01

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 7, 2010?)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL7 2010-02-01

http://java.sun.com/j2se/1.3/docs/api/java/util/Collections.html#max(java.util.Collection)
http://download.java.net/jdk7/docs/api/java/util/Collections.html#max(java.util.Collection)

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 7, 2010?)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL7 2010-02-01

http://java.sun.com/j2se/1.3/docs/api/java/util/Collections.html#max(java.util.Collection)
http://download.java.net/jdk7/docs/api/java/util/Collections.html#max(java.util.Collection)

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 7, 2010?)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL7 2010-02-01

http://java.sun.com/j2se/1.3/docs/api/java/util/Collections.html#max(java.util.Collection)
http://download.java.net/jdk7/docs/api/java/util/Collections.html#max(java.util.Collection)

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 7, 2010?)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL7 2010-02-01

http://java.sun.com/j2se/1.3/docs/api/java/util/Collections.html#max(java.util.Collection)
http://download.java.net/jdk7/docs/api/java/util/Collections.html#max(java.util.Collection)

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 7, 2010?)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL7 2010-02-01

http://java.sun.com/j2se/1.3/docs/api/java/util/Collections.html#max(java.util.Collection)
http://download.java.net/jdk7/docs/api/java/util/Collections.html#max(java.util.Collection)

Outline

1 Types

2 Types in Object-Oriented Languages

3 Haskell Curry

4 Type Classes in Haskell

5 Examples of Haskell Type Classes

6 Closing

Ian Stark APL7 2010-02-01

Haskell Brooks Curry

Haskell Brooks Curry, 1900–1982
Logician

Ian Stark APL7 2010-02-01

http://www.facebook.com/pages/Haskell-Curry/43907171074

Curry-Howard correspondence

Propositions as Types

A and B A× B ∀x.A(x) Πx.A(x)

A or B A + B ∃y.B(y) Σy.B(y)

A ⇒ B A → B ∀X.X ⇒ X ΛX.X → X

True 1 Proofs Programs
False 0 Proof rewriting Program execution

The Coq proof assistant is built on the correspondence between proofs and
terms, leading to features like computational reflection and program
extraction. Also, the first machine-verified proof of the four-colour theorem.

Ian Stark APL7 2010-02-01

Currying

A× B → C ∼= A → B → C

(A & B) ⇒ C ⇔ A ⇒ (B ⇒ C)

Left to right is currying Right to left is uncurrying.

If we had some ham, we could have ham and eggs, if we had any eggs.

Ian Stark APL7 2010-02-01

Outline

1 Types

2 Types in Object-Oriented Languages

3 Haskell Curry

4 Type Classes in Haskell

5 Examples of Haskell Type Classes

6 Closing

Ian Stark APL7 2010-02-01

What have classes ever done for us?

Object-oriented languages employ classes, inheritance, and class hierarchy
for a range of reasons:

Substitutability
Modularity
Encapsulation
Abstraction
Polymorphism
Code reuse
. . .

Haskell’s type classes are quite different, but do provide some similar
benefits.

Ian Stark APL7 2010-02-01

Ad-hoc vs. Parametric polymorphism

Object-oriented code is polymorphic when it can be used with objects from
different classes:

Shape[] shapeArray;
...
for (Shape s : shapeArray) // For every shape in the array ...
{ s.draw(); } // ... invoke its "draw" method.

Each Shape s may actually be a Square, Circle or other implementation of
Shape, each with its own implementation of draw.

These implementations may be entirely different, and possibly
incompatible: consider Picture.draw() and Cowboy.draw().

Ian Stark APL7 2010-02-01

Ad-hoc vs. Parametric polymorphism

. . .

These implementations may be entirely different, and possibly
incompatible: consider Picture.draw() and Cowboy.draw().

Christopher Strachey named this ad-hoc polymorphism. By contrast,
parametric polymorphism allows code to have the same action across
many types of data.

Parametric polymorphism arrived in Java 5 and C# 2.0 as generics, now
extensively used in the standard libraries of both languages.

Note that C++ templates can achieve a similar effect (and many others), but at
the cost of duplicating code during compilation. The ideal for parametric
polymorphism is that because the action is the same, the executing code should
be the same too.

Ian Stark APL7 2010-02-01

Not such ad-hoc polymorphism

class Eq a where
(==) :: a −> a −> Bool

instance Eq Int where
i == j = eqInt i j

instance (Eq a) => Eq [a] where
[] == [] = True; (x:xs) == (y:ys) = (x == y) && (xs == ys)

member :: Eq a => a −> [a] −> Bool
member x [] = False
member x (y:ys) = (x == y) || member x ys

P. Wadler and S. Blott.
How to make ad-hoc polymorphism less ad-hoc.
Proc. POPL ’89, pp. 60–76.

Ian Stark APL7 2010-02-01

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/75277.75283

Pass the dictionary

Type classes can be implemented by dictionary-passing. You write:

below :: Num n => n −> n −> n
below x y = y − x

The compiler can turn that into:

below :: Num n −> n −> n −> n
below d x y = (−) d y x

Here (d :: Num n) is an additional parameter, a dictionary of all the
operations that make type n an instance of class Num.

This need not be an expensive translation: subsequent optimisations may
well then inline and even eliminate the dictionary if all the types can be
determined in advance.

Ian Stark APL7 2010-02-01

Use the types

When type classes appear, the action selected depends on the types of all
parties involved; not just arguments, or the first argument.
This opens up some flexibility in just how that action is chosen.

below :: Num n => n −> n −> n
below x y = y − x

read :: Read a => String −> a
read "12" + 3.4

In some cases, the compiler may have to work unexpectedly hard to work
out what types, and hence dictionary choices, to make.

Ian Stark APL7 2010-02-01

Outline

1 Types

2 Types in Object-Oriented Languages

3 Haskell Curry

4 Type Classes in Haskell

5 Examples of Haskell Type Classes

6 Closing

Ian Stark APL7 2010-02-01

Natural overloaders

Some type classes immediately present themselves as opportunities for
overloading:

Equality: Eq
Order: Ord
Print and scan: Show and Read
Iteration: Enum, Bounded, Ix

Not least, the numeric classes:

Num, Fractional, Real, Integral, Fractional, Floating, RealFrac,
RealFloat

Remember, those are just the classes. The types matching them are Float,
Double, Int, Integer, Rational = Ratio Integer, Complex Double, . . .

Ian Stark APL7 2010-02-01

Standard Haskell Classes

Ian Stark APL7 2010-02-01

But wait! There’s more

Somewhat unexpectedly, the ingenious applications of type classes go far,
far beyond this.

Pretty-printing
Modular arithmetic [Kiselyov & Shan 2004]

class Modular s a | s −> a where modulus :: s −> a

Phantom types: data T a = String
Arithmetic in the type system: class Add a b ab
SK combinators, logic programming, Turing completeness...

Ian Stark APL7 2010-02-01

It’s fun to have fun, but you have to know how

Ian Stark APL7 2010-02-01

But seriously

QuickCheck

prop_Insert x xs = ordered xs ==> ordered (insert x xs)

Main> quickCheck prop_Insert
OK: passed 100 tests

QuickCheck has no privileged access to the compiler: it uses type classes
to obtain the right random generators, for the right number of arguments,
for every test.

K. Claessen and John Hughes
QuickCheck: A lightweight tool for random testing of Haskell
programs
Proc. ICFP 2000, pp. 268–279.

Ian Stark APL7 2010-02-01

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/351240.351266
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/351240.351266

Outline

1 Types

2 Types in Object-Oriented Languages

3 Haskell Curry

4 Type Classes in Haskell

5 Examples of Haskell Type Classes

6 Closing

Ian Stark APL7 2010-02-01

Reading

For next time, read the following paper and set of slides.

P. Wadler and S. Blott.
How to make ad-hoc polymorphism less ad-hoc.
Proc. POPL ’89, pp. 60–76.

S. L. Peyton Jones.
Wearing the hair shirt: a retrospective on Haskell
Invited talk at POPL 2003.

Ian Stark APL7 2010-02-01

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/75277.75283
http://research.microsoft.com/en-us/um/people/simonpj/papers/haskell-retrospective/

Further Reading

If you are interested in type classes, and in particular how they can be
efficiently implemented, read these.

L. Augustsson
Implementing Haskell Overloading
Proc. FPCA ’93

J. Peterson and M. Jones
Implementing Type Classes
Proc. PLDI ’93

C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler
Type classes in Haskell,
Proc. ESOP ’94

Ian Stark APL7 2010-02-01

	Types
	Types in Object-Oriented Languages
	Haskell Curry
	Type Classes in Haskell
	Examples of Haskell Type Classes
	Closing

