
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL19: Heterogeneous Metaprogramming in F#

Ian Stark

School of Informatics
The University of Edinburgh

Monday 15 March 2010
Semester 2 Week 10

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Domain-Specific vs. General-Purpose Languages

This is the third of four lectures on integrating domain-specific languages
with general-purpose programming languages. In particular, SQL for
database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL19 2010-03-15

Topic: Domain-Specific vs. General-Purpose Languages

This is the third of four lectures on integrating domain-specific languages
with general-purpose programming languages. In particular, SQL for
database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL19 2010-03-15

Outline

1 Metaprogramming

2 F#

3 Examples of metaprogramming in F# with LINQ

Ian Stark APL19 2010-03-15

Outline

1 Metaprogramming

2 F#

3 Examples of metaprogramming in F# with LINQ

Ian Stark APL19 2010-03-15

Metaprogramming

The term metaprogramming covers almost any situation where a program
manipulates code, either its own or that of some other program. This may
happen in many ways, including for example:

Textual manipulation of code as strings
Code as a concrete datatype
Code as an abstract datatype
Code generation at compile time or run time
Self-modifying code
Staged computation

Although this would also include any compiler or interpreter, the idea of
metaprogramming usually indicates specific language features, or especially
close integration between the subject and object programs.

Ian Stark APL19 2010-03-15

Metaprogramming Examples

Macros

#define geometric_mean(x,y) sqrt(x∗y)

#define BEGIN {
#define END }

#define LOOP(var,low,high) \
for (int var=low; var<high; var++) BEGIN

int i , total = 0; LOOP(i,1,10) total=total+i; END

Here geometric_mean is an inlined function; while the non-syntactic
LOOP macro is building code at compile time.

Ian Stark APL19 2010-03-15

Metaprogramming Examples

C++ Templates

template<int n>
Vector<n> add(Vector<n> lhs, Vector<n> rhs)
{
Vector<n> result = new Vector<n>;
for (int i = 0; i < n; ++i)
result .value[i] = lhs.value[i] + rhs.value[i];

return(result);
}

This template describes a general routine for adding vectors of arbitrary
dimension. Compile-time specialization can give custom code for fixed
dimensions if required. The C++ Standard Template Library does a lot of
this kind of thing.

Ian Stark APL19 2010-03-15

Metaprogramming Examples
Java reflection
import java.io.∗;
import java.lang.reflect.∗;

Class c = Class.forName("java.lang.System"); // Fetch System class
Field f = c.getField("out"); // Get static field
Object p = f.get(null); // Extract output stream
Class cc = p.getClass(); // Get its class
Class types[] = new Class[] { String.class }; // Identify argument types
Method m = cc.getMethod("println", types); // Get desired method
Object a[] = new Object[] { "Hello, world" }; // Build argument array
m.invoke(p,a); // Invoke method

Reflection of this kind in Java and many other languages allows for
programs to indulge in runtime introspection. This is heavily used, for
example, by toolkits that manipulate Java beans.

Ian Stark APL19 2010-03-15

Metaprogramming Examples

Javascript eval

eval("3+4"); // Returns 7

a = "5−"; b = "2";
eval(a+b); // Returns 3, result of 5−2

eval(b+a); // Runtime syntax error

b = "1";
c = "a+a+b";
eval(eval(c)); // Returns 3, result of 5−5−1

Any language offering this has to include at least a parser and interpreter
within its runtime.

Ian Stark APL19 2010-03-15

Metaprogramming Examples

Lisp eval

(eval ’(+ 3 4)) ; Result is 7

(eval ‘(+ ,x ,x ,x))) ; Result is 3∗x, whatever x is

(eval−after−load "bibtex"
’(define−key bibtex−mode−map

[(meta backspace)] ’backward−kill−word))

Unlike Javascript eval, code here is structured data, built using quote
’(...) The backquote or quasiquote ‘(...) allows computed values to
be inserted using the antiquotation comma ,(...).

Ian Stark APL19 2010-03-15

Metaprogramming Examples

MetaOCaml

let x = .< 4+2 >. ;;
val x : int code = .< 4+2 >.

let y = .< .~x + .~x >. ;;
val y : int code = .< (4+2)+(4+2) >.

let z = .! y ;;
val z : int = 12

Arbitrary OCaml code can be quoted .< >., antiquoted with .~ and
executed with .! . All these can be nested, giving a multi-stage
programming language with detailed control over exactly what parts are
evaluated when in the chain from source to execution.

Ian Stark APL19 2010-03-15

Metaprogramming Examples

MetaOCaml

let x = .< 4+2 >. ;;
val x : int code = .< 4+2 >.

let y = .< .~x + .~x >. ;;
val y : int code = .< (4+2)+(4+2) >.

let z = .! y ;;
val z : int = 12

Various research projects have implemented multi-stage versions of
Scheme, Standard ML, Java/C# and so on.

Ian Stark APL19 2010-03-15

Metaprogramming Examples

MetaOCaml

let x = .< 4+2 >. ;;
val x : int code = .< 4+2 >.

let y = .< .~x + .~x >. ;;
val y : int code = .< (4+2)+(4+2) >.

let z = .! y ;;
val z : int = 12

This is homogeneous metaprogramming: the language at all stages is
OCaml. There is a version of MetaOCaml that supports heterogeneous
metaprogramming, with final execution of the code offshored into C.

(pun)

Ian Stark APL19 2010-03-15

Outline

1 Metaprogramming

2 F#

3 Examples of metaprogramming in F# with LINQ

Ian Stark APL19 2010-03-15

F#

F# is a functional programming language for the .NET Framework. It
combines the succinct, expressive, and compositional style of functional
programming with the runtime, libraries, interoperability, and object model
of .NET. http://fsharp.net, 2010-03-14

Easy F#

let rec fib n = match n with 0 | 1 −> 1 | n −> fib (n−1) + fib (n−2)

let build first last = System.String.Join(" ", [|first; last |])

let name = build "Joe" "Smith"

To a (poor) first approximation, F# is OCaml syntax with .NET libraries.

Ian Stark APL19 2010-03-15

http://fsharp.net

F# Sales Pitch

F# at Microsoft Research

F# brings you type safe, succinct, efficient and expressive functional
programming language on the .NET platform. It is a simple and pragmatic
language, and has particular strengths in data-oriented programming,
parallel I/O programming, parallel CPU programming, scripting and
algorithmic development. It lets you access a huge .NET library and tools
base and comes with a strong set of Visual Studio development tools. F#
combines the advantages of typed functional programming with a
high-quality, well-supported modern runtime system.

http://research.microsoft.com/fsharp, 2010-03-14

Ian Stark APL19 2010-03-15

http://research.microsoft.com/fsharp
http://research.microsoft.com/fsharp

F#

Interoperability with the .NET framework and other .NET languages is
central to F#.

Core syntax is OCaml: with higher-order functions, lists, tuples,
arrays, records, . . .

Objects are nominal: with classes, inheritance, dot notation for field
and method selection, . . . (So no structural subtyping for objects)

.NET toys: extensive libraries, concurrent garbage collector,
install-time/run-time (JIT) compilation, debuggers, profilers, . . .

Creates and consumes .NET/C# types and values; can call and be
called from other .NET languages.

Generates and consumes .NET code: can exchange functions with
other languages, and polymorphic expressions are exported with
generic types.

Ian Stark APL19 2010-03-15

F# Timeline

Developed by Don Syme at Microsoft Research Cambridge (MSR).
Started as Caml.NET, with a first preview release of F# compiler in
2002/2003.
2005: MSR release V1.0, with basic Visual Studio integration.
September 2008: Official Microsoft Community Technology Preview
(CTP) release
February 2010: F# Version 2.0 in Visual Studio 2010 Release
Candidate
April 2010: Visual Studio 2010 and .NET 4.0 due to release with C#,
VB, C++ and F# as its core languages.

“This is one of the best things that has happened at Microsoft
ever since we created Microsoft Research over 15 years ago”

S. Somasegar, Head of Microsoft Developer Division, 2007-10-17

Ian Stark APL19 2010-03-15

http://blogs.msdn.com/somasegar/archive/2007/10/17/f-a-functional-programming-language.aspx

F# Timeline

Developed by Don Syme at Microsoft Research Cambridge (MSR).
Started as Caml.NET, with a first preview release of F# compiler in
2002/2003.
2005: MSR release V1.0, with basic Visual Studio integration.
September 2008: Official Microsoft Community Technology Preview
(CTP) release
February 2010: F# Version 2.0 in Visual Studio 2010 Release
Candidate
April 2010: Visual Studio 2010 and .NET 4.0 due to release with C#,
VB, C++ and F# as its core languages.

“This is one of the best things that has happened at Microsoft
ever since we created Microsoft Research over 15 years ago”

S. Somasegar, Head of Microsoft Developer Division, 2007-10-17

Ian Stark APL19 2010-03-15

http://blogs.msdn.com/somasegar/archive/2007/10/17/f-a-functional-programming-language.aspx

Some F# References

Microsoft F# Developer Center
http://fsharp.net

Visual F# Developer Library
http://msdn.microsoft.com/en-us/library/dd233154(VS.100).aspx

Tomáš Petříček: Blog with several F# articles
http://tomasp.net/

F# Programming Wikibook
http://en.wikibooks.org/wiki/F_Sharp_Programming

19 January 2010 — Don Syme: Geek of the Week
http://www.simple-talk.com/opinion/geek-of-the-week/don-syme-geek-of-the-week/

Ian Stark APL19 2010-03-15

http://fsharp.net
http://msdn.microsoft.com/en-us/library/dd233154(VS.100).aspx
http://tomasp.net/
http://en.wikibooks.org/wiki/F_Sharp_Programming
http://www.simple-talk.com/opinion/geek-of-the-week/don-syme-geek-of-the-week/

Outline

1 Metaprogramming

2 F#

3 Examples of metaprogramming in F# with LINQ

Ian Stark APL19 2010-03-15

F# Metaprogramming Paper

D. Syme
Leveraging .NET meta-programming components from F#:
Integrated queries and interoperable heterogeneous execution.
In ML ’06: Proceedings of the ACM SIGPLAN 2006 Workshop on
ML, pages 43–54. ACM Press, September 2006.

Ian Stark APL19 2010-03-15

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/1159876.1159884
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/1159876.1159884

LINQ Metaprogramming in C#

Recall from the last lecture that LINQ→SQL passes on the information
needed to evaluate a query as an expression tree. By analyzing this, a
complex expression combining several query operations might be executed
in a single SQL call to the database.

Expression trees are built as required, and may include details of C#
source code. For example:

Expression<Func<int,bool>> test = (id => (id<max));

Now “test” is not an executable function, but a data structure
representing the given lambda expression.

This is quotation, but implicit: rather than having syntax to mark
quotation of “(id => (id<max))”, the compiler deduces this from its type
“Expression”.

Ian Stark APL19 2010-03-15

Quotations in F#

Simple quote

> open Microsoft.FSharp.Quotations

− let a = <@ 3 @>;;
val a : Expr<int>

> a;;
val it : Expr<int> = <@ (Int32 3) @>

F# provides explicit quotation markers. Here the interactive response
exposes the internal structure of an expression.

Ian Stark APL19 2010-03-15

Quotations in F#

Larger quote

> <@ "Hello " + "World" @>;;
val it : Expr<string>
= <@

(App (App (Microsoft.FSharp.Core.Operators.op_Addition)
((String "Hello")))

((String "World")))
@>

A more complex quotation gives a more complex expression. Although
verbose, the structure is exactly that of the original expression.

Ian Stark APL19 2010-03-15

Quotations in F#

Function quote

> <@ fun x −> x+1 @>;;
val it : Expr<(int −> int)>
= <@
fun x#39844.4 −>
(App

(App (Microsoft.FSharp.Core.Operators.op_Addition) x#39844.4)
((Int32 1)))

@>

An expression of function type includes details of the function body. Here
x#39844.4 is a variable name chosen by the expression printer.

Ian Stark APL19 2010-03-15

Quotation Templates

Quote with hole

> let f = <@ 5 + _ @>;;
val f : (Expr<int> −> Expr<int>)

> f a;; // Remember that a is <@ 3 @>
val it : Expr<int>
= <@
(App (App (Microsoft.FSharp.Core.Operators.op_Addition) ((Int32 5)))

((Int32 3)))
@>

A quotation with one or more holes gives a function mapping expressions
to expressions. The operation “ lift : ’a −> Expr<’a>” allows
antiquotation, plugging in runtime values.

Ian Stark APL19 2010-03-15

Quotation Templates

Splicing into a quotation

> let f x = <@ 5 + %x @>;;
val f : (Expr<int> −> Expr<int>)

> f a;; // Remember that a is <@ 3 @>
val it : Expr<int>
= <@
(App (App (Microsoft.FSharp.Core.Operators.op_Addition) ((Int32 5)))

((Int32 3)))
@>

Quotation holes are point-free: the splicing operator “%" helps to write
more complex functions that build large expressions from smaller ones.

Ian Stark APL19 2010-03-15

Application: F# to SQL by LINQ

Query in memory

val (|>) : ’a −> (’a −> ’b) −> ’b // Pipeline operator

let query =
fun db −>
db.Employees
|> where (fun e −> e.City = "Edinburgh")
|> select (fun e −> (e.Name,e.Address))

The query function will inspect an in-memory datastructure db.Employees,
filtering those working in Edinburgh and projecting out their name and
address.
Here where and select are versions of filter and map for the
db.Employees data type.

Ian Stark APL19 2010-03-15

Application: F# to SQL by LINQ

Query via SQL

val (|>) : ’a −> (’a −> ’b) −> ’b

let query = SQL
<@ fun db −>

db.Employees
|> where (fun e −> e.City = "Edinburgh")
|> select (fun e −> (e.Name,e.Address)) @>

Quoting the internals now gives a query function that will inspect an external
database instead.

Ian Stark APL19 2010-03-15

Application: F# to SQL by LINQ

Query via SQL

val (|>) : ’a −> (’a −> ’b) −> ’b

let query = SQL
<@ fun db −>

db.Employees
|> where (fun e −> e.City = "Edinburgh")
|> select (fun e −> (e.Name,e.Address)) @>

The SQL function takes a quoted expression and passes it to LINQ; which
compiles it to SQL and then hands it off to the database engine as:

SELECT Name, Address FROM Employees WHERE City = "Edinburgh"

Ian Stark APL19 2010-03-15

Application: F# to SQL by LINQ

Query via SQL

val (|>) : ’a −> (’a −> ’b) −> ’b

let query = SQL
<@ fun db −>

db.Employees
|> where (fun e −> e.City = "Edinburgh")
|> select (fun e −> (e.Name,e.Address)) @>

This heterogeneous metaprogramming leads to some mismatches between
F# and SQL semantics: for example, SQL date/time is rounded to 3msec,
less precise than .NET, and the definition of Math.Round is different.

Ian Stark APL19 2010-03-15

Application: F# Runtime Code Generation

Powers of x

> let rec power (n,x) = if n = 0 then 1 else x∗power(n−1,x);;
val power : int ∗ int −> int

> let power4 = fun x −> power (4,x);;
val power4 : int −> int

> power4 5;;
val it : int = 625

Ian Stark APL19 2010-03-15

Application: F# Runtime Code Generation

Powers of x

> let rec metapower (n,x) =
− if n = 0
− then <@ 1 @>
− else <@ _ ∗ _ @> (lift x) (metapower(n−1,x)) ;;
val metapower : int ∗ int −> Expr<int>

> let metapower4 = fun x −> metapower (4,x) ;;
val metapower4 : int −> Expr<int>

The metapower function computes xn as an expression rather than a value.

Ian Stark APL19 2010-03-15

Application: F# Runtime Code Generation

Powers of x

> metapower4 5
− ;;
val it : Expr<int>
= <@
(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))

(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))
(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))

(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))
((Int32 1)))))) @>

The metapower4 function computes x4 as an expression rather than a value.
Like the database expression, this too can be passed to LINQ.

Ian Stark APL19 2010-03-15

Application: F# Runtime Code Generation

Powers of x

> metapower4 5
− ;;
val it : Expr<int>
= <@
(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))

(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))
(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))

(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))
((Int32 1)))))) @>

LINQ provides lightweight code generation: at runtime the code is built,
JIT compiled, run, and then garbage collected away.

Ian Stark APL19 2010-03-15

Application: Accelerating F# by Outsourcing

let matrix f = Array2.init x y f // Build x∗y array filled with f x y
...
let neg a = matrix (fun i j −> − a.(i,j))
let (.+) a b = matrix (fun i j −> a.(i,j) + b.(i , j))
let (.&&) a b = matrix (fun i j −> a.(i,j) && b.(i , j))
..
let rotate a dx dy = matrix (fun i j −> a.((i+dx)%x,(j+dy)%y))
let count a = matrix (fun i j −> int_of_bool a.(i,j))

let nextGeneration(a) = // Take one step in Conway’s Life
let N dx dy = rotate (count a) dx dy in
let sum = N (−1) (−1) .+ N (−1) 0 .+ N (−1) 1

.+ N 0 (−1) .+ N 0 1

.+ N 1 (−1) .+ N 1 0 .+ N 1 1 in
(sum .= three) .| | (sum .= two) .&& a);;

Ian Stark APL19 2010-03-15

Application: Accelerating F# by Outsourcing

open Microsoft.ParallelArrays // Use e.g. GPU pixel shader
let shape = [| x; y |] // Fixed dimensions x,y
..
let And (a:FPA) (b:FPA) = FPA.Min (a, b) // Built−in operations on
let Or (a:FPA) (b:FPA) = FPA.Max (a, b) // floating−point arrays
..
let Rotate (a:FPA) i j = a.Rotate([| i;j |])
..
let nextGenerationGPU (a:FPA) = // Take one step in Conway’s Life

let N dx dy = Rotate a dx dy in
let sum = N (−1) (−1) .+ N (−1) 0 .+ N (−1) 1

.+ N 0 (−1) .+ N 0 1

.+ N 1 (−1) .+ N 1 0 .+ N 1 1 in
Or (Equals sum three) (And (Equals sum two) a);;

Ian Stark APL19 2010-03-15

Application: Accelerating F# by Outsourcing

Using the Accelerator data-parallel library to drive an alternative
computing engine is neat, but we did have to rewrite the code.

As an alternative to writing new code for this particular application, we
can write a general GPU translator that works over any expression:

val accelerateGPU : (’a[,] −> ’a[,]) expr −> ’a[,] −> ’a[,]

All we need do to run life on the GPU is then:

let nextGenerationGPU’ = accelerateGPU <@ nextGeneration @>

Caveat: The semantic mismatches are now more serious — actual floating-point arithmetic on
GPU and CPU is not bit-identical.

Ian Stark APL19 2010-03-15

Application: Accelerating F# by Outsourcing

Using the Accelerator data-parallel library to drive an alternative
computing engine is neat, but we did have to rewrite the code.

As an alternative to writing new code for this particular application, we
can write a general GPU translator that works over any expression:

val accelerateGPU : (’a[,] −> ’a[,]) expr −> ’a[,] −> ’a[,]

All we need do to run life on the GPU is then:

let nextGenerationGPU’ = accelerateGPU <@ nextGeneration @>

Caveat: The semantic mismatches are now more serious — actual floating-point arithmetic on
GPU and CPU is not bit-identical.

Ian Stark APL19 2010-03-15

Application: Accelerating F# by Outsourcing

Using the Accelerator data-parallel library to drive an alternative
computing engine is neat, but we did have to rewrite the code.

As an alternative to writing new code for this particular application, we
can write a general GPU translator that works over any expression:

val accelerateGPU : (’a[,] −> ’a[,]) expr −> ’a[,] −> ’a[,]

All we need do to run life on the GPU is then:

let nextGenerationGPU’ = accelerateGPU <@ nextGeneration @>

Caveat: The semantic mismatches are now more serious — actual floating-point arithmetic on
GPU and CPU is not bit-identical.

Ian Stark APL19 2010-03-15

Application: Accelerating F# by Outsourcing

Using the Accelerator data-parallel library to drive an alternative
computing engine is neat, but we did have to rewrite the code.

As an alternative to writing new code for this particular application, we
can write a general GPU translator that works over any expression:

val accelerateGPU : (’a[,] −> ’a[,]) expr −> ’a[,] −> ’a[,]

All we need do to run life on the GPU is then:

let nextGenerationGPU’ = accelerateGPU <@ nextGeneration @>

Caveat: The semantic mismatches are now more serious — actual floating-point arithmetic on
GPU and CPU is not bit-identical.

Ian Stark APL19 2010-03-15

Job Advertisement

Wednesday, March 10, 2010 6:53 AM dsyme http://u.nu/5g6s7

Contract Position in the F# Team: Compiler and Visual Tools
Software Engineer for Cross-Platform F#

We are now seeking applications for a contract position with the F# team

Contract length: 6 months – 1 year
Hiring Group: Microsoft Research, Cambridge
Location: Cambridge UK. Remote working possible.

F# is a cross-platform language executing on any CLI implementation, including
those found on Windows, Mac OS/X, Linux, Silverlight, XBox 360 and mobile
phones. We are seeking a talented and highly motivated software engineer with
experience in compilers and/or visual tools to make targeted improvements to the
support the execution, development and tools experience across these platforms.

Ian Stark APL19 2010-03-15

Summary

Metaprogramming ranges from syntactic expansion through hygienic
macros to staged computation and runtime code generation.

F# is an ML for .NET, with an emphasis on interlanguage working.

Quotations and templates bring metaprogramming to F#.

F# can use LINQ to generate SQL . . .

. . . or native code at runtime . . .

. . . or to outsource execution wherever seems best.

Ian Stark APL19 2010-03-15

	Metaprogramming
	F#
	Examples of metaprogramming in F# with LINQ

