
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL18: Bridging Query and Programming Languages

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 11 March 2010
Semester 2 Week 9

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Domain-Specific vs. General-Purpose Languages

This is the second of four lectures on integrating domain-specific
languages with general-purpose programming languages. In particular,
SQL for database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL18 2010-03-11

Topic: Domain-Specific vs. General-Purpose Languages

This is the second of four lectures on integrating domain-specific
languages with general-purpose programming languages. In particular,
SQL for database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL18 2010-03-11

Topic: Domain-Specific vs. General-Purpose Languages

This is the second of four lectures on integrating domain-specific
languages with general-purpose programming languages. In particular,
SQL for database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query
Overview of Microsoft .NET Framework
Integrating queries into C# programming
Extensions to the C# language

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL18 2010-03-11

The Microsoft .NET Framework

Microsoft’s .NET is a large framework for developing, deploying, and
running applications. It now forms a substantial part of the Windows
platform, and most additions to Windows arrive as part of .NET.

From the skewed perspective of this course, we can conveniently divide
.NET features into two domains:

Application management infrastructure

Interesting programming language provision

Ian Stark APL18 2010-03-11

.NET Application Management

The .NET framework supplies extensive support for building and managing
large applications.

Building:
General-purpose base classes: collections, datatypes, text manipulation,
networking, crypto, file access, graphics, . . .
High-level Windows specials: Forms, Presentation, Communication,
Active Directory, Workflow, Cardspace, . . .

Managing:
Library control and access
Application packaging and deployment
Name spaces and versioning

.NET assemblies provide rich metadata and other facilities for managing
deployment and execution.

Ian Stark APL18 2010-03-11

.NET Programming Language Support

.NET is comparatively language-neutral, providing a shared platform for
multiple programming languages.

The Common Language Infrastructure is intended to allow high-level
interworking between languages.

A Common Language Runtime (CLR) provides memory management,
garbage collection, code security and other runtime services.
The Common Intermediate Language (CIL, or Microsoft’s MSIL) is a
bytecode that serves as the binary format for .NET components.
The Common Type System (CTS) means that applications and
libraries written in different languages can sensibly communicate
high-level data structures.

MSIL is comparable to the Java virtual machine bytecode, but with a few
refinements built in (generics, unboxed datatypes) and better support for
different language paradigms.

Ian Stark APL18 2010-03-11

.NET Programming Languages

Several programming languages are available for .NET, all compiling to
MSIL, and all sharing access to the .NET libraries and to each other.

There is good Visual Studio .NET integration for C#, VB.NET (Visual
Basic), C/C++, F#, Standard ML, Python and Ruby.

Wikipedia lists another 50 or so .NET languages
(right down to LOLcode.net)

For legacy code, and facilities not directly available in the CLR, .NET
provides explicit handling of "managed" and "native" code assemblies.

Overall, .NET is similar to Java/JavaEE except for: multiple-language
support; symbiotic with Microsoft Windows.

Ian Stark APL18 2010-03-11

Database Query from Java

Connection con = DriverManager.getConnection(url, user, password);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT name, id, score FROM Users");

while (rs.next()) // Loop through each row returned by the query
{
String n = rs.getString("name");
int i = rs.getInt("id");
float s = rs.getFloat("score");
System.out.println(n+i+s);

}

Ian Stark APL18 2010-03-11

Database Query from C#

SqlConnection con = new SqlConnection(dataSourceString);

con.Open();

string query = "SELECT name, id, score FROM Users";

SqlCommand command = new SqlCommand(query, con);

SqlDataReader rdr = command.ExecuteReader();

while (rdr.Read())
{ Console.WriteLine("{0} {1} {2}", rdr[0], rdr[1], rdr[2]); }

rdr.Close();

Ian Stark APL18 2010-03-11

Could Do Better

These existing arrangements for database access have good and bad
points:

3 Industrial strength: alternative back-end drivers, scalable, supported,
familiar.

3 Straightforward: strings are easily to read and edit. (For humans, at least.)

7 Fragile: concatenating and manipulating strings easily goes wrong.
7 Insecure: sanitizing user input becomes essential but also difficult.

7 Unchecked: the strong static checking of Java/C# is abandoned
within the query string.

7 Semantically lossy: the high-level abstraction and structure of SQL as
a domain-specific declarative programming language is all gone.

Ian Stark APL18 2010-03-11

Parameterized Queries

Constructions like Java’s prepared statements can help a little:
...
String prequery =
"SELECT id, name FROM Users WHERE ? < score AND score < ?";

PreparedStatement stmt = con.prepareStatement(prequery);

stmt.setFloat(1,low); // Fill in the two
stmt.setFloat(2,high); // missing values

rs = stmt.executeQuery(query); // Now run the completed query
...

This is less fragile, and offers opportunities for sanitization: but to go
further reinvents features that host programming languages already have.

Ian Stark APL18 2010-03-11

Could Still Do Better

These existing arrangements for database access have good and bad
points:

3 Industrial strength: alternative back-end drivers, scalable, supported,
familiar.

3 Straightforward: strings are easily to read and edit. (For humans, at least.)

? Fragile: concatenating and manipulating strings easily goes wrong.
? Insecure: sanitizing user input becomes essential but also difficult.

7 Unchecked: the strong static checking of Java/C# is abandoned
within the query string.

7 Semantically lossy: the high-level abstraction and structure of SQL as
a domain-specific declarative programming language is all gone.

Ian Stark APL18 2010-03-11

Limits to Parameterized Queries

Prepared statements can do some things, but not others:
...
Tester t1, t2;

String prequery =
"SELECT id, name FROM Users WHERE ?(score) AND ?(score)";

PreparedStatement stmt = con.prepareStatement(prequery);

stmt.setTest(1,t1.test); // Fill in the two
stmt.setTest(2,t2.test); // missing tests

rs = stmt.executeQuery(query); // Now run the completed query
...

We can’t begin to do this in Java: even if we could pass around first-class
functions, they wouldn’t fit into SQL. Yet many functions could be mapped to SQL.

Ian Stark APL18 2010-03-11

Aside: Hiding Everything Can Work Sometimes

One approach is to wrap up all database access in a library. For example,
the Java Persistence API, known in its Hibernate implementation, uses
database backing to provide persistent object storage.

Good:
Excellent language integration, use works solely in host language.
Using a data access object or active record can provide an OO view
on relational databases.
Can bring features like persistence, transaction support from one
language into another.

Not so good:
Anything not already in the library, or not fitting the OO model,
requires going back to coding in SQL (or HQL, or similar).
In particular, this applies to the very thing an RDBMS does best:
efficient execution of complex queries across large datasets.

Ian Stark APL18 2010-03-11

LINQ

LINQ, Language Integrated Query, aims to improve the alignment between
programming languages and query languages.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = from u in users
where low < u.Score && u.Score < high
select new { u.Id, u.Name };

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL18 2010-03-11

LINQ

There is more here than just extra SQL-like keywords. The
Table<Person> has typed records, field selection u.Score can be checked
at compile time, and each item has a correct static type.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = from u in users
where low < u.Score && u.Score < high
select new { u.Id, u.Name };

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL18 2010-03-11

LINQ

Note also that while var query = from ... builds a query, here of type
IEnumerable<...>, it need not necessarily execute it; this can be deferred
until the data itself is required by the foreach(...) statement.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = from u in users
where low < u.Score && u.Score < high
select new { u.Id, u.Name };

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL18 2010-03-11

LINQ

The special SQL-like syntax is sugar that expands into a sequence of
method invocations, each of which returns an IEnumerable<...> object.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = users.Where(u => (low < u.Score && u.Score < high))
.Select(u => new { u.Id, u.Name }) ;

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL18 2010-03-11

LINQ

In this case, the Where and Select methods act much like filter and map
do on (lazy) lists in a functional language.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = users.Where(u => (low < u.Score && u.Score < high))
.Select(u => new { u.Id, u.Name }) ;

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL18 2010-03-11

LINQ

Although the SQL-like syntax is natural for requesting records from a
database, in fact the expansion to regular methods means that it can be
used for any kind of IEnumerable<...> objects.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = users.Where(u => (low < u.Score && u.Score < high))
.Select(u => new { u.Id, u.Name }) ;

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL18 2010-03-11

LINQ

This expansion into standard method calls also opens up query handling to
compiler optimisation: we are no longer just executing an SQL string, but
building a structured query.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = users.Where(u => (low < u.Score && u.Score < high))
.Select(u => new { u.Id, u.Name }) ;

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL18 2010-03-11

Language Support for LINQ

Beyond these small examples, LINQ is a general technique for managing
data queries in .NET programming languages: currently supported for
{Object, SQL,XML} queries in {C# 3,Visual Basic 9}.

LINQ maps the structure of queries into the host programming language,
which allows rich possibilities for manipulation and optimization. However,
to do this requires several language extensions, including:

Lambda expressions
Free-standing method declarations
Structural datatypes
Anonymous record types
Type inference

These are new to C#, but based on well-established concepts from other
existing languages.

Ian Stark APL18 2010-03-11

Language Support for LINQ

Lambda expressions

Java inner classes and C# delegates allow for local declaration of methods:

int max = 100;
...
Func test = delegate(int id){ return id < max }

... now use test ...

A lambda expression elides the declaration so that anonymous functions
become first-class values:

... just use (id => (id<max)) ...

Ian Stark APL18 2010-03-11

Language Support for LINQ

Extension methods
Object-oriented programming allows related classes to implement methods
in different ways. With extension methods, a third party can add further
methods to an existing class.

// Extension to String class
public static String Bracket(this String source, String pre, String post)
{ return pre+source+post; }

...
String s = "Hello, World";
s.Bracket("[", "]"); // Invokes method Bracket(s, "[", "]")

This is used for Where, Select and other LINQ methods.

Ian Stark APL18 2010-03-11

Language Support for LINQ

Structural datatypes
Using data-centric programming in LINQ means that many classes serve
only to hold structured values, without object-style state or behaviour.

To support this a new object initialization constructor creates a structured
data value with an anonymous type:

object v = new { title = "OED", volumes = 20, mass = 65.68 };

For precise static typing in these cases, a new var keyword instructs the
compiler to infer an appropriate type from the value provided.

var i = 42 // i is an int
var s = "Foo" // s is a string
var v = new { left = 50, right = 100 } // v has an anonymous type

This means that later uses of the object v can be typechecked correctly.

Ian Stark APL18 2010-03-11

Language Support for LINQ

Metaprogramming
In a final programming technology twist, LINQ to SQL and LINQ to XML
pass on full details of how a query was constructed, to help with efficient
evaluation. This is in the form of an expression tree, which can also
include details of C# source code. For example:

Expression<Func<int,bool>> test = (id => (id<max));

Now test is not an executable function, but a data structure representing
the given lambda expression.

LINQ presents the information needed to evaluate a query as an expression
tree. By analyzing this, a complex expression combining several query
operations might be executed in a single SQL call to the database.

This is a limited form of structured metaprogramming, where a program
may inspect and work with code itself in a type-safe way.

Ian Stark APL18 2010-03-11

Homework

Browse the Visual Studio developer documentation. Start here:

.NET Programming in Visual Studio 2010: Language-Integrated
Query (LINQ)
http://msdn.microsoft.com/en-us/library/bb397926(VS.100)29.aspx

and be sure to look at one of these:
C# 3.0 Features That Support LINQ
http://msdn.microsoft.com/library/bb397909(VS.100).aspx
Visual Basic Features That Support LINQ
http://msdn.microsoft.com/library/bb384991(VS.100).aspx

Monday’s lecture will be about language integration in F#. If you haven’t
already programmed in F#, then find out about it.

Ian Stark APL18 2010-03-11

http://msdn.microsoft.com/en-us/library/bb397926(VS.100)29.aspx
http://msdn.microsoft.com/library/bb397909(VS.100).aspx
http://msdn.microsoft.com/library/bb384991(VS.100).aspx

Summary

.NET is a large application development framework, with a common
virtual machine, type system, and support for interlanguage working.

LINQ manages queries from within the programming language, not as
strings but as first-class entities.
This uses a number of programming language features new to .NET.
The integration goes deep: queries are semantic, not syntactic,
objects.
LINQ also introduces first-class expressions, the beginnings of
structured reflection and metaprogramming.

Ian Stark APL18 2010-03-11

