
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL17: Using SQL from Java

Ian Stark

School of Informatics
The University of Edinburgh

Monday 8 March 2010
Semester 2 Week 9

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Topic: Domain-Specific vs. General-Purpose Languages

This is the first of four lectures on integrating domain-specific languages
with general-purpose programming languages. In particular, SQL for
database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL17 2010-03-08



Topic: Domain-Specific vs. General-Purpose Languages

This is the first of four lectures on integrating domain-specific languages
with general-purpose programming languages. In particular, SQL for
database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL17 2010-03-08



SQL

SQL is a programming language, with a declarative part:

select isbn, title , price
from books
where price > 100.00
order by title

and an imperative part:

update books set price = 10.00 where price < 10.00
drop table sales

as well as numerous extensions, such as procedures and transactions.

SQL is a domain-specific language, rather than a general-purpose
programming language.

Ian Stark APL17 2010-03-08



Who Writes SQL?

SQL is one of the world’s most widely used programming languages, but
programs in SQL come from many sources. For example:

Hand-written by a programmer
Generated by some interactive visual tool
Generated by an application to fetch an answer for a user
Generated by one program as a way to communicate with another

Most SQL is written by programs, not directly by programmers.

The same is true of HTML, another domain-specific language.

Also XML, Postscript,. . .

Ian Stark APL17 2010-03-08



SkyServer Demonstration

http://cas.sdss.org/dr7/en/
http://cas.sdss.org/dr7/en/sdss/telescope/telescope.asp
http://cas.sdss.org/dr7/en/tools/search/

Ian Stark APL17 2010-03-08

http://cas.sdss.org/dr7/en/
http://cas.sdss.org/dr7/en/sdss/telescope/telescope.asp
http://cas.sdss.org/dr7/en/tools/search/


HTML Injection

The Pluto page is an example of HTML injection.

The SkyServer website appears to be serving an incorrect image.

This is used in phishing attacks, and other fraud, where a web server can
be cajoled into presenting novel material as its own.

For example, a suitably crafted URL may cause a bank’s own web server to
present a page that requests account details and then sends them to an
attacker’s own site.

The opportunity to inject HTML and even Javascript can arise whenever a
web site takes user input and uses that to generate pages. It is even
possible to use web search engines to locate vulnerable sites.

Ian Stark APL17 2010-03-08



Google Buzz XSS Hack

2010-02-09 Google Buzz social communication tool launched

2010-02-16 Cross-site scripting injection attack publicly demonstrated
2010-02-17 Google patch bug

Ian Stark APL17 2010-03-08



Google Buzz XSS Hack

2010-02-09 Google Buzz social communication tool launched
2010-02-16 Cross-site scripting injection attack publicly demonstrated

2010-02-17 Google patch bug

Ian Stark APL17 2010-03-08



Google Buzz XSS Hack

2010-02-09 Google Buzz social communication tool launched
2010-02-16 Cross-site scripting injection attack publicly demonstrated
2010-02-17 Google patch bug

Ian Stark APL17 2010-03-08



Google Buzz XSS Hack

2010-02-09 Google Buzz social communication tool launched
2010-02-16 Cross-site scripting injection attack publicly demonstrated
2010-02-17 Google patch bug

http://www.theregister.co.uk/2010/02/16/google_buzz_security_bug/
http://ha.ckers.org/blog/20100216/google-buzz-security-flaw/

Ian Stark APL17 2010-03-08

http://www.theregister.co.uk/2010/02/16/google_buzz_security_bug/
http://ha.ckers.org/blog/20100216/google-buzz-security-flaw/


SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database.

For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

Ian Stark APL17 2010-03-08



SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

Ian Stark APL17 2010-03-08



SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

we might supply the unusual email address “x’ or 1=1 --”

Ian Stark APL17 2010-03-08



SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

we might supply the unusual email address “x’ or 1=1 --” to get

select id, email, password
from users
where email = ’x’ or 1=1 −−’

which will return a complete list of users.

Ian Stark APL17 2010-03-08



SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

we might supply the perverse email address “x’; update users set
email=’bob@example.com’ where email=’admin@server’ --”

Ian Stark APL17 2010-03-08



SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

we might supply the perverse email address “x’; update users set
email=’bob@example.com’ where email=’admin@server’ --” to get

select id, email, password
from users
where email = ’x’; update users set email = ’bob@example.com’

where email = ’admin@server’ −−’

which will redirect all the administrator’s email to Bob.

Ian Stark APL17 2010-03-08



XKCD on SQL Injection

http://xkcd.com/327

Ian Stark APL17 2010-03-08

http://xkcd.com/327


XKCD on SQL Injection

http://xkcd.com/327

Ian Stark APL17 2010-03-08

http://xkcd.com/327


XKCD on SQL Injection

http://xkcd.com/327

Ian Stark APL17 2010-03-08

http://xkcd.com/327


XKCD on SQL Injection

http://xkcd.com/327

Ian Stark APL17 2010-03-08

http://xkcd.com/327


Dubious Licence Plate

Ian Stark APL17 2010-03-08



Working with Query Languages

How then do we write programs to generate and manipulate queries?

A common approach is to use some standard framework or application
programming interface (API). ODBC, the Open Database Connectivity
specification, is a well-known framework for managed database access:

At the back, an ODBC driver contains code for a specific database
management system (DB2, Oracle, SQL Server, . . . ).
At the front, the programmer connects to a fixed procedural API
In between, core ODBC libraries translate between the API and the
driver.

Particular programming languages and environments may place further
layers on top of ODBC, or have alternative similar mechanisms. For
example: JDBC for Java and ADO.NET for the Microsoft .NET
framework.

Ian Stark APL17 2010-03-08



JDBC: Java Database Connectivity

JDBC is a Java library, in the java.sql.∗ and javax.sql.∗ packages, which
provides access to read, write and modify tabular data.

Relational databases, with access via SQL, is the most common
application; but JDBC can also operate on other data sources.

The connection to the database itself may be via a driver that bridges
through ODBC, speaks a proprietary database protocol, or connects to
some further networking component or application.

Ian Stark APL17 2010-03-08



JDBC Bootup

import java.sql.∗; // Obtain the relevant classes

// Install a suitable driver
Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

// Identify the database
String url = "jdbc:derby:Users";

// Prepare login information
String user = "bob"
String password = "secret"

// Open connection to database
Connection con = DriverManager.getConnection(url, user, password);

Ian Stark APL17 2010-03-08



Sample JDBC

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT name, id, score FROM Users");

while (rs.next()) // Loop through each row returned by the query
{
String n = rs.getString("name");
int i = rs.getInt("id");
float s = rs.getFloat("score");
System.out.println(n+i+s);

}

Ian Stark APL17 2010-03-08



JDBC String Fiddling

float findScoreForUser(Connection con, String name) {

Statement stmt = con.createStatement();

String query =
"SELECT id, score FROM Users WHERE name=" + name;

ResultSet rs = stmt.executeQuery(query);

float s = rs.getFloat("score");

return s;
}

Ian Stark APL17 2010-03-08



JDBC Prepared Strings

String findUsersInRange(Connection con, float low, float high) {

String prequery =
"SELECT id, name FROM Users WHERE ? < score AND score < ?";

PreparedStatement stmt = con.prepareStatement(prequery);

stmt.setFloat(1,low); // Fill in the two
stmt.setFloat(2,high); // missing values

rs = stmt.executeQuery(query); // Now run the completed query

String answer = ""; // Start building our answer

while (rs.next()) // Cycle through the query responses
{ answer = answer + rs.getInt("id") + ":" + rs.getString("name") + "\n"; }
return answer;

}

Ian Stark APL17 2010-03-08



Homework

Have a look at these two tutorials on database access in Java and C#.

Sun’s JDBC tutorial
http://java.sun.com/docs/books/tutorial/jdbc/index.html

The C# Station ADO.NET tutorial
http://www.csharp-station.com/Tutorials/AdoDotNet/Lesson01.aspx

You don’t need to work through every detail, but the key is to see how
these languages provide control of SQL.

Twitter have a Scala library called Querulous for connecting to databases.
http://github.com/nkallen/querulous

Look at the basic query examples to see what language features they use
to simplify construction of correct SQL.

Ian Stark APL17 2010-03-08

http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://www.csharp-station.com/Tutorials/AdoDotNet/Lesson01.aspx
http://github.com/nkallen/querulous


Summary

SQL is a domain-specific programming language.
This makes it excellent for abstraction and expressiveness in its
domain.
Treating SQL programs as strings ignores all of this.
Lots of programs write other SQL programs, by concatenation.
That can create problems, most notoriously security holes.
Standard frameworks may plug some holes, but that’s about it.

SQL queries are programs in a structured high-level language, but we treat
them as unstructured text.

Ian Stark APL17 2010-03-08


