
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL14: Further language concurrency mechanisms

David Aspinall
(including slides by Ian Stark)

School of Informatics
The University of Edinburgh

Thursday 25 February 2010
Semester 2 Week 10

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da
http://www.inf.ed.ac.uk/~stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Programming-Language Techniques for Concurrency

This is the third in a block of lectures presenting some
programming-language techniques for managing concurrency.

Introduction, basic Java concurrency

Concurrency abstractions in Java

Concurrency in some other languages

Guest lecture(s) TBC



Outline

1 Concurrency mechanisms

2 Scala

3 Polyphonic C#



Concurrency mechanisms
There is a large design space for concurrent language mechanisms. Two
requirements are separation, to prevent inconsistent access to shared
resources, and co-operation for communication between tasks.

Various language paradigms have been followed, e.g.:

locks and conditions: tasks share memory and exclude and signal one
another using shared memory (e.g., Java);

synchronous message passing: tasks share communication channels and
use rendezvous to communicate (e.g., Ada, Concurrent ML);

asynchronous message passing: a task offers a mail box which receives
messages (e.g. Erlang, Scala Actors);

lock-free algorithms or transactional memory: tasks share memory but
detect and repair conflicts.

Language designs have also been influenced by mathematical models used
to capture and analyse the essence of concurrent systems, for example,
π-calculus, the join calculus, and the ambient calculus.



Concurrency mechanisms
There is a large design space for concurrent language mechanisms. Two
requirements are separation, to prevent inconsistent access to shared
resources, and co-operation for communication between tasks.

Various language paradigms have been followed, e.g.:

locks and conditions: tasks share memory and exclude and signal one
another using shared memory (e.g., Java);

synchronous message passing: tasks share communication channels and
use rendezvous to communicate (e.g., Ada, Concurrent ML);

asynchronous message passing: a task offers a mail box which receives
messages (e.g. Erlang, Scala Actors);

lock-free algorithms or transactional memory: tasks share memory but
detect and repair conflicts.

Language designs have also been influenced by mathematical models used
to capture and analyse the essence of concurrent systems, for example,
π-calculus, the join calculus, and the ambient calculus.



Concurrency mechanisms
There is a large design space for concurrent language mechanisms. Two
requirements are separation, to prevent inconsistent access to shared
resources, and co-operation for communication between tasks.

Various language paradigms have been followed, e.g.:

locks and conditions: tasks share memory and exclude and signal one
another using shared memory (e.g., Java);

synchronous message passing: tasks share communication channels and
use rendezvous to communicate (e.g., Ada, Concurrent ML);

asynchronous message passing: a task offers a mail box which receives
messages (e.g. Erlang, Scala Actors);

lock-free algorithms or transactional memory: tasks share memory but
detect and repair conflicts.

Language designs have also been influenced by mathematical models used
to capture and analyse the essence of concurrent systems, for example,
π-calculus, the join calculus, and the ambient calculus.



Outline

1 Concurrency mechanisms

2 Scala

3 Polyphonic C#



Scala and Erlang
Scala is a functional object-oriented language that compiles to the Java
Virtual Machine. It allows full interoperability with Java. Scala is designed
by Martin Odersky and his team at EPFL, Lausanne, Switzerland.
Scala’s concurrency is based on the Actor model also used in several other
languages. A notable commercial success story is Ericsson’s language
Erlang designed for massively concurrent telecommunications equipment.

Ericsson AXD 301 multiservice 10–160Gbit/s switch
Nortel 8661 SSL Acceleration Ethernet Routing Switch

http://www.scala-lang.org


Asynchronous message passing

An actor is a process abstraction that interacts with other actors by
message passing. Message sending is asynchronous. Each actor has a mail
box which buffers incoming messages. Messages are processed by
matching.

Sending

actor ! message

// sender is the last actor
// we received from
sender ! message

// shorthand for above
reply(message)

Receiving

receive {
case pattern => action
...
case pattern => action

}



Example: ping pong

class Ping(pong: Actor)
extends Actor {
def act() {

var pings = 0;
pong ! Ping
while (true) {

receive {
case Pong =>
pong ! Ping
pings += 1
if (pings % 1000 == 0)
Console.println(

"Ping: pong "+pings)
}

}}}

class Pong extends Actor {
def act() {

var pongs = 0
while (true) {

receive {
case Ping =>

sender ! Pong
pongs += 1

}}}}

object pingpong
extends Application {

val pong = new Pong
val ping = new Ping(pong)
ping.start
pong.start

}



Reply-response protocols

Actors often take part in sequences of message exchanges, which are more
synchronous in nature. There is a special encoding for writing these.

Sending and receiving

actor !? message

is like

actor ! (self ,message)
receive {

case pattern => ...
}



Event-based actors

Actors are either thread-based or event-based. Thread based actors block
on receive calls. Event-based actors provide an alternative which uses a
more lightweight mechanism.

Event based receiving

react {
case pattern => action
...
case pattern => action

}

A react statement encapsulates the rest of a computation for an actor and
never returns. The event-based framework generates tasks that process
messages and suspend and resume actors, using continuations derived
from the react blocks.



Example: bounded buffer

class BoundedBuffer[T](N: int) {
private case class Put(x: T)
private case object Get
private case object Stop

def put(x: T) {
buffer !? Put(x)

}

def get: T =
(buffer !? Get).asInstanceOf[T]

def stop() {
buffer !? Stop

}
}

private val buffer = actor {
val buf = new Array[T](N)
var in = 0; var out = 0; var n = 0
loop {

react {
case Put(x) if n < N =>
buf(in) = x
in = (in + 1) % N
n = n + 1; reply()

case Get if n > 0 =>
val r = buf(out)
out = (out + 1) % N
n = n − 1; reply(r)

case Stop => reply()
exit("stopped")

}
}}



Summary

Concurrency in Scala

Concurrency in Scala is modelled with actors
Each actor has a mail box, to which other threads can send messages
asynchronously.
Actors sift through received messages by pattern-matching.
Scala actors can be either thread-based or event-based.
Thread-based actors block JVM threads when waiting to receive a
message.
Event-based actors use task management within a JVM thread to
allow cheap context switching between suspended actors.



Outline

1 Concurrency mechanisms

2 Scala

3 Polyphonic C#



Polyphonic C#

Polyphonic C# is a mild extension of C# which introduced novel
primitives for writing concurrent programs, based on the join calculus.

The design was inspired by these ideas:

Focus on communication rather than concurrency.

Unify message passing with method invocation.

Look not just for individual messages but patterns of messages.

Polyphonic C# itself is no longer maintained. The concurrency mechanisms also appear in Cω,
and are provided in the Joins library for C# other .NET languages. Similar notions have been
applied in JoCaml and Join Java.

http://research.microsoft.com/en-us/um/people/crusso/joins


New constructs in Polyphonic C#

Asynchronous methods
Conventional method invocation in C# is synchronous: when code calls a
method on an object, it cannot continue until that method completes.

In contrast, when code invokes an asynchronous method, it continues at
once, and does not have to wait for the method to finish.

Chords
Standard method declarations associate one piece of code (the body) to
each method name (up to overloading by parameter type and number).

In Polyphonic C#, a chord declares code that is to be executed only when
a particular combination of methods are invoked.



Example: unbounded concurrent buffer

public class Buffer {

public String get() & public async put(String s) { return s; }
}

This has two methods, get and put, jointly defined in a chord, with a single
return statement in the body.

Consumers call get(): this blocks until a producer invokes put(s), and then
the chord is complete so s is returned to the consumer.

Producers call put(s): if a consumer is waiting on get(), then the chord
is complete and value is handed on; if not, the call is noted, and control
returns to the producer. Either way, the async call returns at once.

Multiple put or get calls can be outstanding at any time.



Example: unbounded concurrent buffer

public class Buffer {

public String get() & public async put(String s) { return s; }
}

No threads are spawned: the body of the chord is executed by the
caller of the synchronous get method.
Where there are multiple threads, it is entirely thread-safe: several
producers and consumers can run simultaneously.
No critical sections, monitors or mutual exclusion: there is no shared
storage for interference.
No explicit locks: the compiler looks after the brief locking required
at the moment of chord selection.



Example: unbounded concurrent buffer

public class Buffer {

public String get() & public async put(String s) { return s; }
}

Each chord may combine many method names.
At most one method in a chord can be synchronous.
Each method can appear in multiple chords.
A chord may be entirely asynchronous.
Synchronous calls may block; asynchronous calls return at once.
Calls stack up until a chord is matched.



Example: one-place buffer

public class OnePlaceBuffer {

public OnePlaceBuffer() { empty(); }

public void put(String s) & private async empty() {
contains(s);
return;

}

public String get() & private async contains(String s) {
empty();
return s;

}
}



Workings of the one-place buffer
The class has four methods:

Two public synchronous methods put(s) and get();
Two private asynchronous methods empty() and contains(s).

There is always exactly one empty() or contains(s) call pending. No
threads are needed, but where there is concurrency the code remains safe.

Method put(s) blocks unless and until there is an empty() call.
Method get() blocks unless and until there is a contains(s) call.

The code operates a simple state machine:

empty()start contains(s)

put(s)

get()



Summary

Polyphonic C# Concurrency

Central notion of asynchronous computation.
Implicit concurrency: no explicit threads, locks, mailboxes,
channels,. . . ; although all these could be coded up.
Synchronization points made explicit with chords.
Declarative presentation makes compiler optimisations possible.


	Concurrency mechanisms
	Scala
	Polyphonic C#

