Advances in Programming Languages

APL12: Coursework Assignment, Review

David Aspinall

School of Informatics
The University of Edinburgh

Thursday 18 February 2010
Semester 2 Week 6

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

@ Course schedule

What's in the course?

The lectures will cover four sample areas of “advances in programming
languages”:

@ Specifying and statically checking behaviour of Java code

@ Type classes in Haskell can do anything

@ Patterns and abstractions for programming concurrent code
°

LINQ and cross-language integration in .NET

Lectures also specify reading and exercises on the topics covered. This
homework is not assessed, but it is essential in order to fully participate in
the course.

What's in the course?

The lectures will cover four sample areas of “advances in programming
languages”:

@ Specifying and statically checking behaviour of Java code

@ Type classes in Haskell can do anything

@ Patterns and abstractions for programming concurrent code
@ LINQ and cross-language integration in .NET

Lectures also specify reading and exercises on the topics covered. This
homework is not assessed, but it is essential in order to fully participate in
the course.

There is substantial piece of written coursework which contributes
20% of students’ course grade. This requires investigation of a
topic in programming languages and writing a 10-page report with
example code.

Assignment schedule

Week 1 Thursday 14 January: Topic announcement

Week 5 Friday 12 February: Intermediate report

Week 6 Thursday 18th February: Assignment review lecture
Week 8 Friday 5 March: Final report

© Reminder of topics

Links: Web Programming without Tiers

Programming the Web with Links

The Links language unifies the traditional three tiers of web programming:
client activity within the web page being viewed; server software directing
web site responses; and a back-end database providing content and
persistent storage. A single program written in Links is compiled into a
different language for each tier and then automatically distributed across
them as appropriate.

Links itself is functional, with a range of novel features to present a
coherent programming interface for database manipulation, embedded
XML, and user interaction flow.

Multiple inheritance

Multiple inheritance in Scala with traits and mixins

The Scala language provides traits and mixins as modularisation
constructs.

Mixin composition solves the infamous multiple inheritance ambiguity
problem: does a class A that inherits from B and from C implement A.m
as B.m or C.m? Java forbids multiple inheritance but provides interfaces.
However, interfaces cannot contain implementations, leading to code
duplication. Scala’s trait and mixin constructs remedy this.

Parallel programming in Haskell

Parallel programming in Haskell with par and seq

The original Haskell '98 language has no specific facilities for concurrent or
parallel programming. However, there are several compiler extensions and
libraries which make both possible. In particular, operations par and seq
allow a programmer to enable parallel or sequential computation of results,
and from these build more complex strategies for parallel evaluation across
multiple cores or even distributed processors.

Haskell STM library

Software Transactional Memory in Haskell

The STM library for the Glasgow Haskell Compiler (GHC) provides
high-level language support for coordinating concurrent computation,
where multiple threads act simultaneously on shared datastructures.

Remarkably, STM does this without using locks. Instead, it uses efficient
and optimistic software transactions, giving freedom from deadlock and
promoting non-interfering concurrency. These transactions are modular
and composable: small transactions can be glued together to make larger
ones. Moreover, implementing this within the Haskell type system gives
static guarantees that transactions are used correctly.

Asynchronous Workflows in F#

Asynchronous Workflows in F#

Microsoft's F# language provides several facilities for the building and
high-level manipulation of computations and metacomputations. One of
these, workflows, allows libraries to define domain-specific sublanguages for
particular kinds of computation.

Using this, the Async module gives a way to write code that can execute
asynchronously when necessary, without needing to explicitly describe any
threads or communication. Actions that might potentially block or be
long-running will automatically happen in the background, with their
results retrieved as they arrive.

© An example: Alice ML

Futures and promises

Futures and promises in Alice ML

The Alice ML language is based on Standard ML, with several extensions
to support distributed concurrent programming.

In particular it provides futures and promises for lightweight concurrency:
a future represents the result of a computation that may not yet be
available, and a promise is a handle to build your own future.

Project homepage

File Edit View History Bookmarks Tools Help

\rl_":‘/“’e

[[®) | ntp swwwps.uni-sbdesalices

Saarland University
Informatics

Programming Systems Overview

Alice ML is a functional programming language based on Standard ML,
e extended with rich support for concurrent, distributed, and constraint programming. Alice ML extends Standard ML with
s several new features

People
Fapers; e Futures: laziness and light-weight concurrency with implicit data-flow synchronisation 3
. Jules: higher-order functors and abstract signatures
Manual . Dau\age) integrating static with dynamic typing and first class modules
CD'M.'Q‘G?(‘ * Pickiing: higher-order type-safe, generic & platform-independent persistence
LTS Components: platform-independence and type-safe dynamic import & export of modules
Contact s Distribution: type-safe cross-platform remote functions and network mability
Wiki * Consiraints: solving combinaterical problems using constraint propagation and programmable search
Bugs The Alice System is a rich open-source programming system faaturing the following tools:
. machine: a portable VM with support for just-in-time compilation L
& Inferactive system: an intarpreter-like interactive toplevel with easy graphical interface
/\ * Ba mpiler. separate compilation
L L ker. type-safe bundling of components
i I8 ® [nspector: atool for interactively inspecting data structures
Explorer a tool for interactively investigating search problems
Gile+: a binding for the Gnome toolkit GUI library
. - a library for accessing SQL databases
.

- a simple library for parsing XML documents
Tutorial

Be our guest on the Short Tour to Alice!

http /.S uni-sb.de/alice/papers htmi v

Downloading and installing

@ Often not entirely triviall Should work for topics recommended.
@ Try your preferred environment/machine, resort to DICE as a fallback.

@ You should have already solved any problems for your intermediate
report.

For Alice, | chose to download the RPM files to install onto my Fedora Linux machine. This
required first finding and installing some additional libraries, as my OS is newer than the one for

which Alice was packaged.

wget http://www.ps.uni-sb.de/alice/download/rpm/alice-complete-1.4-1.i386.rpm
wget http://www.ps.uni-sb.de/alice/download/rpm/gecode-1.3.1-1.1386.rpm

rpm -ivh alice* gecodex*

Trying examples

Inspector options
_future
File Edit View Terminal Tabs Help
[da@harrison ~]§ alice
jAlice 1.4 ("Kraftwerk 'Equaliser' Album') mastered 2007/04/24
#4# loaded signature from x-alice:/lib/systenvPrint | 9
444 loaded signature from x-alice:/lib/tools/Inspector Reaty

444 loaded signature from x-alice:/lib/distribution/Remote
- val alice = it;

val alice : unit -» unit = lazy =
- fun fib @=1 | fib 1 =1 | fib n = fib (n-1) + fib (n-2); Inspecior Optons

val fib : int -> int = _fn 14930352

- val n = spawn fib 35;

val n : int = _future

- dnspect n; . -
(alice:27085): GtK-WARNING **: Unable to locate theme engine in mod freacy

doka",

(alice:27085): Gtk-WARNING **: Unable to locate theme engine in mod
doka",

Gtk-Message: Failed to load module “gnamebreakpad': libgnomebreakpa
open shared object file: No such file or directory

Gtk-Message: Failed to load module “canberra-gtk-module': libcanber
.so: cannat open shared object Tile: No such file or directory

val it : unit = ()

- inspect n;

val it @ unit = ()
- inspect n;

val it : unit = ()
- alice();

val it @ unit = ()
That's all, said Humpty Dumpty. Good-bye.
[dagharrison ~1$

Learning more about the topic

Overview

A future is a place-holder for the undetermined result of a (concurrent)
computation. Once the computation delivers a result, the associated future is
eliminated by globally replacing it with the result value. That value may be a
future on its own.

Whenever a future is requested by a concurrent computation, i.e. it tries to
access its value, that computation automatically synchronizes on the future
by blocking until it becomes determined or failed.

There are four kinds of futures:

ent futures stand for the result of a concurrent computation,
stand for the result of a computation that is only performed

tures stand for a value that is promised to be delivered later

eans,
. 1 futures represent the result of a computation that terminated with
an exception.

Next questions:

how do | use futures?

what advantages do they bring? what drawbacks?

how are they related to other language features?

do they have well understood foundations? a good implementation?
how and when were futures invented?

Resources

@ Useful sites to search the academic literature:

http://citeseerx.ist.psu.edu/ CiteSeerX, formerly the best search and
citation index for computer science.

http://citeseerx.ist.psu.edu/
http://www.informatik.uni-trier.de/~ley/db/
http://scholar.google.com
http://lambda-the-ultimate.org/
http://developers.slashdot.org

Resources

@ Useful sites to search the academic literature:
http://citeseerx.ist.psu.edu/ CiteSeerX, formerly the best search and
citation index for computer science.
http://www.informatik.uni-trier.de/~ley/db/ DBLP: an invaluable
bibliography, with links to electronic editions.

http://citeseerx.ist.psu.edu/
http://www.informatik.uni-trier.de/~ley/db/
http://scholar.google.com
http://lambda-the-ultimate.org/
http://developers.slashdot.org

Resources

@ Useful sites to search the academic literature:
http://citeseerx.ist.psu.edu/ CiteSeerX, formerly the best search and
citation index for computer science.
http://www.informatik.uni-trier.de/~ley/db/ DBLP: an invaluable
bibliography, with links to electronic editions.
http://scholar.google.com beware: Google's idea of an academic
article is broader than most.

@ Lambda the Ultimate: Programming languages weblog.
Some astonishing enthusiasm for heavy programming language theory.
@ http://developers.slashdot.org
One channel on the self-proclaimed News for Nerds. Occasional
programming language issues, lots of comments but can be thin on
content. Good for searching for news. Beware of the trolls.

@ comp.lang.<almost-any-language>, comp.lang.functional
Programming language newsgroups, some very busy. c.1.f has a
endless supply of questioners, and some very patient responders.

http://citeseerx.ist.psu.edu/
http://www.informatik.uni-trier.de/~ley/db/
http://scholar.google.com
http://lambda-the-ultimate.org/
http://developers.slashdot.org

One resource for everything?

Wikipedia is an invaluable first stop resource for many topics, but has a
number of drawbacks for scholarly use:

@ it's a wikil — pages can change at any time, and be changed by
anyone;

@ it is an electronic format: a URL alone is not a sufficient citation;

@ by definition, it is not a primary source: peer reviewed articles,
whitepapers and system documentation will be (more) authoritative.

See Wikipedia's own entries on caution before citing Wikipedia and
caution on academic use of Wikipedia.

http://en.wikipedia.org/wiki/Citing_Wikipedia
http://en.wikipedia.org/wiki/Wikipedia:Academic_use

Resources

Advances in Programming Languages

Lecture log and discussion

Lecture 8: ESC/Java?
Pasted 5 February, 2009 by David Aspinall

Categories: Lecture log

ESC/Javaz: a verification tool combining several analysis
techniques (types, dataflow, proof). An overview of the
checks it performs: exception freedom for common
exceptions (null pointers, array indices, class casts). The lack
of soundness and completeness: false positives and defects
missed. Some further and specialised annotations extending
core JML (non_null, unreachable, modifies, pure).
Specification inheritance.

Read the rest of this post »

Comments: Ee the first to comment Edit

Lecture 7: JML - the Java Modeling Language

Posted 2 February, 2009 by David Aspinall

February 2009
MTWT F 5SS
1
2345678
9 101112131415
16 17 18 19 20 21 22
23 24 25 26 27 28

Jan
‘ Searchl
Links
ut this blog

ramming Language
earch Engine

Bl Lambda the Ultimate

&, March 22-25

DI @rand rhallanaae

Finding relevant papers

A [=1|[o|fx]
File Edit View History Bookmarks Tools Help
aE B v 6 http #/scholar google co uk/ "‘nl
. m
C 00 g [6
Scholar
Advanced Scholar Search
[futures Alice ML || seareh | eeneas
Scholar Help
Stand on the shoulders of giants
Google Home - About Google - About Google Scholar - Go to Google Scholar
@2000 Goagle
Done r 5

Finding relevant papers

File Edit View History Bookmarks Tools Help
=] ~ 6 o hitp://scholar.google.co.uk/scholar?q=utures+Alice+ML&hI=en&ir= ‘ ~ | ‘V @,
Advanced Scholar Search I
OL) e |futuves Alice ML ‘ ‘ Search | ScholaiPreferences
Scholar Scholar Help

Scholar All articles - Recent articles Results 1- 10 of about 20,100 for futures Alice ML. (0.03 seconds)
ror; B Alice ML through the locking glass 1
A Rossberg, D Le Botlan, G Tack, T Brunklaus, G .. - Trends in Functional Programming, 2005 - emn.fr

. state and futures. Unlike Alice, Oz is based on a relational core Ianguage and is
nm staucaHy lyped Acute [22] is an expenmema\ ML-based \anguage for ...
A concurrent lambda calculus with futures - - inri I
J Niehren, J Schwinghammer, G Smolka - Theoretical Compute 2006 - Elsevier

_ The final step by handle.bind binds the future z fo nse\fArvalugnualy onger cyclic
chams of futures may be cnnslruc(ed Futures in Allce ML: There are two .
A Randomized Controlled Trial to Reduce Cancer Risk Through African-American Churches

Corbie-Smith, AS Ammerman, ML Katz, DMM St. ... - J Gen Intern Med, 2003 - Blackwell Synergy

.. Giselle Corbie-Smith, MD, MSc,; Alice S Ammerman DrPH, RD,; Mira L. Katz, PhD ... will

h the des\gn and im \Emenla(mn nffuture CBPR efforts. ...
Alice Through the | coking Glass - »33367.com
A Rossberg, D Le Botlan, G Tack, T Brunklaus, G ... - Intell 2006 - books.google.com

.. Alice, supporting dis -tributed state and futures, for the ... SLW+ 04] is probably closest
in sp\m to Alice.ftis an experlmenla\ MLbased \anguage for typed ...
A Cross-Cultural Analysis of the Behavior of Women and Men: Implications for the Origins of Sex ... - »duke.edu ror
W Woaod, AH Eagly - PSYCHOLOGICAL BULLETIN, 2002 - content.apa.org =
Done

First references for Alice ML

@ The online Alice ML documentation is excellent for potential users.
The papers explain the design and implementation of the language.

@ The first paper is technical (but fun for typed A-calculus fans).
The second is a practical overview of Alice ML language features.

References

@ Andreas Rossberg. Alice Manual: A Tour to Wonderland. At
http://www.ps.uni-sb.de/alice/manual/tour.html. Retrieved on 8th
February 2009, at 22:00 UTC.

@ Joachim Niehren, Jan Schwinghammer, Gert Smolka: A concurrent
lambda calculus with futures. Theoretical Computer Science. 364(3):
338-356 (2006)

@ Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten
Brunklaus, Gert Smolka: Alice through the looking glass. Trends in
Functional Programming 2004: 79-95.

http://www.ps.uni-sb.de/alice/manual/tour.html

Further references for Alice ML

For AliceML, there are many papers provided on the home page, with
publication dates between 2001-2007.

What about the direct influences that lead to the features of AliceML
being studied?

Is there any relevant work which has been published since, building on
AliceML? Or interesting case studies or industrial applications?

Further References

o Halstead, R. H. 1985. MULTILISP: a language for concurrent
symbolic computation. ACM TOPLAS 7, 4 (Oct. 1985), 501-538.

o caf - Concurrency Abstractions using Futures. At

http://sites.google.com /site/cafwiki/. Retrieved on 17th February
2010, at 16:35 UTC.

http://sites.google.com/site/cafwiki/

@ \Writing and submitting

Report formats

Reports must be submitted electronically as a PDF document. The
recommended method for creating these is pdflatex with the article
document class.

In addition, OpenOffice is freely available for Windows and Linux, installed on
Informatics machines, and can write PDF. Mac OS X natively creates PDF.
Microsoft provide PDF output as a plugin for Word 2007.

Submission instructions are on the coursework web page.

Please use recommended filenames!

http://www.openoffice.org
http://www.inf.ed.ac.uk/teaching/courses/apl/2009-2010/assignment.html

Final report: recommended outline

Heading Title, date, author
Abstract This report describes ...
Introduction Content summary, overview of report structure
Context The problem domain
Main topic What it is, how it works; advantages and limitations
Example Annotated code, explanation, screenshot
Salt: the example must in some way concern books or

reading (library catalogue, author database, electronic book
store, ...).

Resources For notable resources used (article, tutorial, manual), give a
summary in your own words of what it contains
Related work Other approaches to the problem
Conclusion What <topic> does, good and bad points
Bibliography Full references for all resources used

Total 8-10 A4 pages. See course coursework web page for further details.

http://www.inf.ed.ac.uk/teaching/courses/apl/2009-2010/assignment.html

Exemplar reports

Futures and Promises in Alice ML

March 13, 2008

Abstract

iave tried 10 allow useful tools and solutions

romming, Alice ML is one of these wses
tures and promises 10 help solve the problem of data synchronisa

Thi eprt expins o oo st wor
displays a detailed example, performts comparisons to other language
solutions and presents related work in this arca.

1 Introduction

Computer technology s chay

tems are being produced yet to truly exploit this feature of systems, pr

ing and increasing all the time. Multi core sys-

will have to be parallelised. This leads to the develapment. of concurzent.pro-

gramming. Concurrent progeamming is difficult to do well in practice
pts and benefits of a good concurrent program are worthwhile,
ereased speed, efficient use of resources, better user response time cte are

a fow of the advantages.
A dominant solution to concurrent programming secms

o be threads. This solution is not perfect and many languages have tried

overcome the many disadvantages and difficultics posed by this solution.
e ML s an extension of Standard ML and supports concurrency

The
In-

dio

he use of futures and promises. This solution to concurrent programming

appears to be a valid and reasonable one. This report explains futures and

promises in Alice ML in more detail, it provides examples and mentions
advantages and disadvant

sges to this solution. Other language solutions to

he concurzent programming problem are also mentioned and compared to

Alice ML

See the course web page for two good submissions from previous students

on the course

Regular Expression Types and Patterns in CDuce
Advances in Programming Languages
Paul McEwan (0432900)
14032008

Abstract
“This report examines the CDuce langua
general purps

typed functional programming language designed for
urpose programming. Unlike other unctional programming language
incorporates native support for XML documents i the language. This report looks at the language,
related work and then at the use of regular expression types and patterns. Specifically, how these
particular types and patterns are used to query/manipulate the XML data, as well as allow static
ehecking by the compiler that the XML data used is always valid.

1. Introduction

The CDuee angag s fncionsh tyed progamming nguses allvin he retion of el
‘Duce and other typed.

Teaguagen ok o o iy desened 10 b used with XML from te st The

language has features included that allow the programer to manipulate and query XML trees

direetly in the code, instead of using additional ree parsers (such as Document Object Model

(DOM) parsers). The language allows for XML fles to be read in or created dircetly in the code and

be exported back 0 4 fle. The XML handled by programs written in CDuce is guaranteed to be

valid (both well-formedsyntactically correct and corresponding t a specific structure).

OF particular interest, the CDuce language allows the inclusion of regular expressions when
defining types and patterns. The use o

these regular expressions allows the programmer to not only
enquire and alter the XML, it also allows the compiler to perform checks statically on the code to
ensure the XML is valid. This report frst examines the CDuce language ata high level (§2), then a
ook at some related work (including languages which inspired the creation of CDuce) (§3). The use.

farexpressions inpatemsandtypes wil hen be examined (4) withan example progam
created using these features of the language (§5). Finally, the report will be concluded by looking
bk t i st af el xprssions i e e and ptems o b CDucs g (61

2. CDuce
“The paper [CDuceXCGPL] presents CDuce in detail and i
the lan

ideal resouree (0 use to understand
. Here, points raised in the paper shall be summarised in order 10 present a general
ion 10 the CDuce language: what it is, how it came about and how it works.

As stated previously, the CDuce language s a typed functional programming language desig
allow the processing of XML data directly i the language while still being a “general put
Tansuage (1. not speific o XML proccseing bt allowing prosrams o b srcard hat e he
fanetonlty) The Cuce proee s anof oot extrsion o the XDuce auage, bt vas

tric”. To this effect, the CDuce language extends upon XDuce by
ddresing - hat he papes referd o a8 - mtons i hrc re
« Type System

edto

L-cent

XDuce type system allowed the
a

y o create types specific o dealing with XML data,
which included having “re of the

ar expression types” and “type-based patterns”. The us

Suitable working practices

Working practices

@ Start with a blank document; all the words must be yours.
@ Do not cut and paste from other documents.
e Except for direct quotations, which must have source declared.

@ Do not let others read your text; nor read theirs.

Aims of this coursework

@ To learn about the chosen topic
@ To improve researching and learning skills

@ To demonstrate said knowledge and skills

The tangible outcome is a document, composed and written by you,
demonstrating what you have learnt.

© Summary

Topics

Links: Web Programming without Tiers
Multiple inheritance in Scala

Parallel programming in Haskell

Software Transactional Memory in Haskell
Asynchronous Workflows in F#

Intermediate report

e Topic choice, three initial references, screenshot.
e Complete. All submissions OK.

Final report

Introduction and discussion of the topic;
example annotated code, screenshots;
resources consulted and related work;
concluding summary and opinions;
bibliography with proper references.
Due: Friday 5th March.

	Course schedule
	Reminder of topics
	An example: Alice ML
	Writing and submitting
	Summary

