Advances in Programming Languages

APL9: Coursework Assignment, Review

David Aspinall and lan Stark

School of Informatics
The University of Edinburgh

Monday 9th February 2009
Semester 2 Week 5

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da
http://homepages.ed.ac.uk/stark

@ Course schedule

© Reminder of topics

© An example: Alice ML
@ \Writing and submitting

© Summary

@ Course schedule

Course schedule

Four main topics, one shorter topic:
Extensible records for typing objects in OCaml
Specifying and statically checking behaviour of Java code

o
@ LINQ and cross-language integration in .NET

@ Patterns and abstractions for programming concurrent code
@ Mobile code that carries its own proof of safety

Plus guest lectures and assignment lectures.

Assignment schedule

Week 3 Monday 26 January: Topic announcement

Week 5 Monday 9th February: Assignment review lecture
Week 5 Friday 13 February: Intermediate report

Week 8 Friday 6 March: Final report

Next: intermediate report

The first report should contain:
@ Your student number;
@ The topic you have chosen;
@ Three suitable references, which you have read; and
@ A screenshot by you of the selected system in action.

One reference must be to a published paper; the other two may be too, but could
also be white papers, web tutorials, manuals, or similar. In all cases provide
enough information for someone else to obtain the document.

To create the screenshot, you will need to have your chosen system downloaded,
installed, and running on a suitable machine.

The report must be submitted as a PDF file called choice.pdf, using the submit
command given on the coursework web page.

http://www.inf.ed.ac.uk/teaching/courses/apl/2008-2009/assignment.html

© Reminder of topics

Information flow in Jif

The Jif compiler extends the Java language with annotations for static
analysis of security properties relating to the flow of information.

These annotations describe restrictions on how information is to be used:
which principals control which information, and what they trust other
principals to do with it. This gives increased assurance that trusted and
untrusted information is used only according to explicit security policies.

Memory annotations in Deputy

The Deputy project at Berkeley is developing a C compiler that can
prevent a number of common programming errors.

In particular, Deputy provides type annotations with which programmers
can describe the intended behaviour of pointers. The compiler will then
apply suitable static and run-time checks to make sure these intentions are
satisfied.

Haskell STM library

Software Transactional Memory in Haskell

The STM library for the Glasgow Haskell Compiler (GHC) provides
high-level language support for coordinating concurrent computation,
where multiple threads act simultaneously on shared datastructures.

Remarkably, STM does this without using locks. Instead, it uses efficient
and optimistic software transactions, giving freedom from deadlock and
promoting non-interfering concurrency. These transactions are modular
and composable: small transactions can be glued together to make larger
ones. Moreover, implementing this within the Haskell type system gives
static guarantees that transactions are used correctly.

Petascale computing with Hadoop

The software platform Hadoop implements MapReduce, a programming
model for massively distributed computation introduced by Google.

MapReduce splits input into pieces, applies a function in parallel to each
piece, then merges the results together. Using a distributed file system,
the framework can compute across thousands of machines, using
redundancy and recovery mechanisms. MapReduce operations are
programmed using Java and the Hadoop libraries, but the more abstract
language Pig Latin can be used to compile to Hadoop instead.

Multiple inheritance

Multiple inheritance in Scala with traits and mixins

The Scala language provides traits and mixins as modularisation
constructs.

Mixin composition solves the infamous multiple inheritance ambiguity
problem: does a class A that inherits from B and from C implement A.m
as B.m or C.m? Java forbids multiple inheritance but provides interfaces.
However, interfaces cannot contain implementations, leading to code
duplication. Scala’s trait and mixin constructs remedy this.

© An example: Alice ML

Futures and promises

Futures and promises in Alice ML

The Alice ML language is based on Standard ML, with several extensions
to support distributed concurrent programming.

In particular it provides futures and promises for lightweight concurrency:
a future represents the result of a computation that may not yet be
available, and a promise is a handle to build your own future.

Project homepage

File Edit View History Bookmarks Tools Help

\rl_":‘/“’e

[[®) | ntp swwwps.uni-sbdesalices

Saarland University
Informatics

Programming Systems Overview

Alice ML is a functional programming language based on Standard ML,
e extended with rich support for concurrent, distributed, and constraint programming. Alice ML extends Standard ML with
s several new features

People
Fapers; e Futures: laziness and light-weight concurrency with implicit data-flow synchronisation 3
. Jules: higher-order functors and abstract signatures
Manual . Dau\age) integrating static with dynamic typing and first class modules
CD'M.'Q‘G?(‘ * Pickiing: higher-order type-safe, generic & platform-independent persistence
LTS Components: platform-independence and type-safe dynamic import & export of modules
Contact s Distribution: type-safe cross-platform remote functions and network mability
Wiki * Consiraints: solving combinaterical problems using constraint propagation and programmable search
Bugs The Alice System is a rich open-source programming system faaturing the following tools:
. machine: a portable VM with support for just-in-time compilation L
& Inferactive system: an intarpreter-like interactive toplevel with easy graphical interface
/\ * Ba mpiler. separate compilation
L L ker. type-safe bundling of components
i I8 ® [nspector: atool for interactively inspecting data structures
Explorer a tool for interactively investigating search problems
Gile+: a binding for the Gnome toolkit GUI library
. - a library for accessing SQL databases
.

- a simple library for parsing XML documents
Tutorial

Be our guest on the Short Tour to Alice!

http /.S uni-sb.de/alice/papers htmi v

Downloading and installing

@ Might not be entirely trivial! Follow instructions carefully.
@ Try your preferred environment/machine, resort to DICE as a fallback.

@ You need to try this now, if you haven't done so already.

For Alice, | chose to download the RPM files to install onto my Fedora Linux machine. This
required first finding and installing some additional libraries, as my OS is newer than the one for
which Alice was packaged.

wget http://www.ps.uni-sb.de/alice/download/rpm/alice-complete-1.4-1.i386.rpm
wget http://www.ps.uni-sb.de/alice/download/rpm/gecode-1.3.1-1.1i386.rpm

rpm -ivh alice* gecodex*

Trying examples

Inspector options
_future
File Edit View Terminal Tabs Help
[da@harrison ~]§ alice
jAlice 1.4 ("Kraftwerk 'Equaliser' Album') mastered 2007/04/24
#4# loaded signature from x-alice:/lib/systenvPrint | 9
444 loaded signature from x-alice:/lib/tools/Inspector Reaty

444 loaded signature from x-alice:/lib/distribution/Remote
- val alice = it;

val alice : unit -» unit = lazy =
- fun fib @=1 | fib 1 =1 | fib n = fib (n-1) + fib (n-2); Inspecior Optons

val fib : int -> int = _fn 14930352

- val n = spawn fib 35;

val n : int = _future

- dnspect n; . -
(alice:27085): GtK-WARNING **: Unable to locate theme engine in mod freacy

doka",

(alice:27085): Gtk-WARNING **: Unable to locate theme engine in mod
doka",

Gtk-Message: Failed to load module “gnamebreakpad': libgnomebreakpa
open shared object file: No such file or directory

Gtk-Message: Failed to load module “canberra-gtk-module': libcanber
.so: cannat open shared object Tile: No such file or directory

val it : unit = ()

- inspect n;

val it @ unit = ()
- inspect n;

val it : unit = ()
- alice();

val it @ unit = ()
That's all, said Humpty Dumpty. Good-bye.
[dagharrison ~1$

Learning about the topic

Overview

A future is a place-holder for the undetermined result of a (concurrent)
computation. Once the computation delivers a result, the associated future is
eliminated by globally replacing it with the result value. That value may be a
future on its own.

Whenever a future is requested by a concurrent computation, i.e. it tries to
access its value, that computation automatically synchronizes on the future
by blocking until it becomes determined or failed.

There are four kinds of futures:

» concurrent futures stand for the result of a concurrent computation,

y futures stand for the result of a computation that is only performed

request,

utures stand for a value that is promised to be delivered later
by explicit means,

* failed futures represent the result of a computation that terminated with

an exception.

Next questions:

how do | use futures?

what advantages do they bring? what drawbacks?

how are they related to other language features?

do they have well understood foundations? a good implementation?
how and when were futures invented?

Resources

@ Useful sites to search the academic literature:
http://citeseerx.ist.psu.edu/ CiteSeerX, formerly the best search and
citation index for computer science.
http://www.informatik.uni-trier.de/~ley/db/ DBLP: an invaluable
bibliography, with links to electronic editions.
http://scholar.google.com beware: Google's idea of an academic
article is broader than most.

@ Lambda the Ultimate: Programming languages weblog.
Some astonishing enthusiasm for heavy programming language theory.

@ http://developers.slashdot.org
One channel on the self-proclaimed News for Nerds. Occasional
programming language issues, lots of comments but can be thin on
content. Beware of the trolls.

@ comp.lang.<almost-any-language>, comp.lang.functional
Programming language newsgroups, some very busy. c.1.f has a
endless supply of questioners, and some very patient responders.

http://citeseerx.ist.psu.edu/
http://www.informatik.uni-trier.de/~ley/db/
http://scholar.google.com
http://lambda-the-ultimate.org/
http://developers.slashdot.org

One resource for everything?

Wikipedia is an invaluable first stop resource for many topics, but has a
number of drawbacks for scholarly use:

@ it's a wikil — pages can change at any time, and be changed by
anyone;

@ it is an electronic format: a URL alone is not a sufficient citation;

@ by definition, it is not a primary source: peer reviewed articles,
whitepapers and system documentation will be (more) authoritative.

See Wikipedia's own entries on caution before citing Wikipedia and
caution on academic use of Wikipedia.

http://en.wikipedia.org/wiki/Citing_Wikipedia
http://en.wikipedia.org/wiki/Wikipedia:Academic_use

Resources

Advances in Programming Languages

Lecture log and discussion

Lecture 8: ESC/Java?
Pasted 5 February, 2009 by David Aspinall

Categories: Lecture log

ESC/Javaz: a verification tool combining several analysis
techniques (types, dataflow, proof). An overview of the
checks it performs: exception freedom for common
exceptions (null pointers, array indices, class casts). The lack
of soundness and completeness: false positives and defects
missed. Some further and specialised annotations extending
core JML (non_null, unreachable, modifies, pure).
Specification inheritance.

Read the rest of this post »

Comments: Ee the first to comment Edit

Lecture 7: JML - the Java Modeling Language

Posted 2 February, 2009 by David Aspinall

February 2009
MTWT F 5SS
1
2345678
9 101112131415
16 17 18 19 20 21 22
23 24 25 26 27 28

Jan
‘ Searchl
Links
ut this blog

ramming Language
earch Engine

Bl Lambda the Ultimate

&, March 22-25

DI @rand rhallanaae

Finding relevant papers

A [=1|[o|fx]
File Edit View History Bookmarks Tools Help
aE B v 6 http #/scholar google co uk/ "‘nl
. m
C 00 g [6
Scholar
Advanced Scholar Search
[futures Alice ML || seareh | eeneas
Scholar Help
Stand on the shoulders of giants
Google Home - About Google - About Google Scholar - Go to Google Scholar
@2000 Goagle
Done r 5

Finding relevant papers

File Edit View History Bookmarks Tools Help
=] ~ 6 o hitp://scholar.google.co.uk/scholar?q=utures+Alice+ML&hI=en&ir= ‘ ~ | ‘V @,
Advanced Scholar Search I
OL) e |futuves Alice ML ‘ ‘ Search | ScholaiPreferences
Scholar Scholar Help

Scholar All articles - Recent articles Results 1- 10 of about 20,100 for futures Alice ML. (0.03 seconds)
ror; B Alice ML through the locking glass 1
A Rossberg, D Le Botlan, G Tack, T Brunklaus, G .. - Trends in Functional Programming, 2005 - emn.fr

. state and futures. Unlike Alice, Oz is based on a relational core Ianguage and is
nm staucaHy lyped Acute [22] is an expenmema\ ML-based \anguage for ...
A concurrent lambda calculus with futures - - inri I
J Niehren, J Schwinghammer, G Smolka - Theoretical Compute 2006 - Elsevier

_ The final step by handle.bind binds the future z fo nse\fArvalugnualy onger cyclic
chams of futures may be cnnslruc(ed Futures in Allce ML: There are two .
A Randomized Controlled Trial to Reduce Cancer Risk Through African-American Churches

Corbie-Smith, AS Ammerman, ML Katz, DMM St. ... - J Gen Intern Med, 2003 - Blackwell Synergy

.. Giselle Corbie-Smith, MD, MSc,; Alice S Ammerman DrPH, RD,; Mira L. Katz, PhD ... will

h the des\gn and im \Emenla(mn nffuture CBPR efforts. ...
Alice Through the | coking Glass - »33367.com
A Rossberg, D Le Botlan, G Tack, T Brunklaus, G ... - Intell 2006 - books.google.com

.. Alice, supporting dis -tributed state and futures, for the ... SLW+ 04] is probably closest
in sp\m to Alice.ftis an experlmenla\ MLbased \anguage for typed ...
A Cross-Cultural Analysis of the Behavior of Women and Men: Implications for the Origins of Sex ... - »duke.edu ror
W Woaod, AH Eagly - PSYCHOLOGICAL BULLETIN, 2002 - content.apa.org =
Done

First references for Alice ML

@ The online Alice ML documentation is excellent for potential users.
The papers explain the design and implementation of the language.

@ The first paper is technical (but fun for typed A-calculus fans).
The second is a practical overview of Alice ML language features.

References

@ Andreas Rossberg. Alice Manual: A Tour to Wonderland. At
http://www.ps.uni-sb.de/alice/manual/tour.html. Retrieved on 8th
February 2009, at 22:00 UTC.

@ Joachim Niehren, Jan Schwinghammer, Gert Smolka: A concurrent
lambda calculus with futures. Theoretical Computer Science. 364(3):
338-356 (2006)

@ Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten
Brunklaus, Gert Smolka: Alice through the looking glass. Trends in
Functional Programming 2004: 79-95.

http://www.ps.uni-sb.de/alice/manual/tour.html

@ \Writing and submitting

Report formats

Each report must be submitted electronically as a PDF document. The
recommended method for creating these is pdflatex with the article
document class.

In addition, OpenOffice is freely available for Windows and Linux, installed on

Informatics machines, and can write PDF. Mac OS X natively creates PDF.
Microsoft provide PDF output as a plugin for Word 2007.

Submission instructions are on the coursework web page.

http://www.openoffice.org
http://www.inf.ed.ac.uk/teaching/courses/apl/2008-2009/assignment.html

Final report

Suggested outline:

Heading
Abstract
Introduction
Context
(Main topic)
Example

Resources

Related work
Conclusion
Bibliography

Title, date, author

This report describes ...

Content summary, overview of report structure

The problem domain

What it is, how it works, advantages and limitations
Annotated code, explanation, screenshot

Salt: the example must in some way concern cooking or
catering (e.g., recipe databases, canteen inventory, . ..)
For notable resources used (article, tutorial, manual), give a
summary in your own words of what it contains

Other approaches to the problem

What (topic) does, good and bad points

Full references for all resources used

Total 8-10 A4 pages. See course coursework web page for further details.

http://www.inf.ed.ac.uk/teaching/courses/apl/2008-2009/assignment.html

Exemplar reports

Futures and Promises in Alice ML

March 13, 2008

Abstract

Varions languages have tried to allow wseful taols and solutions to
concurrent. progtamming, Alice ML is one of these. Alice ML uses
atures and promises 1o help solve the problem of data synchronisa-
fon and concurrency. This report explains how these features work

displays a detailed example, performs comparisons 10 other language

solutions and presents related work in this area

1 Introduction

Computer technology is changing and increasing all the time. Multi core sys-
ems axe being produced et to truly exploit this feature of systems, programs
will have to be parallelised. This leads to the development of concurrent pro-
gramming, Concurrent programming; is difficult 10 do well in practice. The
concepts and benefts of a good concurrent program are worthwhile. In-

creased speed, efficient use of resources, better ser response time ote are
a few of the advantages,

A dominant solution to concurrent programming seems

to be threads. This solution is not perfect and many lunguages have tried to
avercome the many disadvantages and difficultics posed by this solution

ice ML is an extension of Standard ML and supports coneurrency by
the use of futures and promises. This solution to concurrent programming
appears to be a valid and reasonable one. This report explains futures and
promises in Alice ML in mare detail, it provides examples and mentions the

advantages and disadvantages to this solution. Other language solutions to

he concurrent. programming problem are also mentioned and compared to
Alice ML

Regular Expression Types and Patterns in CDuce
Advances in Programming Languages
Paul McEwan (0452900)
1410372008

Abstract
“This report examines the CDuce language, a typed functional programming language designed for
general purpose programming. Unlike other functional programming languages, CDuce
incorprats ative suppor for XML documerts i he language. This report ook at the angusge
reltel ok and heat s f el cpresson ypss s, Syl o
and pattems are uscd well as allow static
Checking b the compler that the XML dota

ML data, as

d is always ko

1. Introducti
The CDuce language is a functional, typed programming language allowing the creation of general
putpose progs. The Ky ifrence between CDuce and e yped, nctoalpogramming
uages (such as Haskell and ML) is that it was designed to be used with XML from the start. The
l.msungx has features included that allow the programer to manipulate and query XML trees
instead of using additional tree parsers (such as Document Object Model
inguage allows for XML files o be read in or created directly in the code and
be exported back to a file. The XML handled by programs written in CDuce is guaranteed to be
valid (both well-formed/syntactically correct and corresponding to a specific structure).

OF particular interest,the CDuce language allows the inclusion of regular expressions when
defining types and patterns. The use of these regular expressions allows the programmer to not only
enquire and alter the XML, it also allows the compiler to perform checks statically on the code o
ensure the XML s valid. This report first examines the CDuce language at a high level (§2), then a
Jook t some el ark il s whichinsidhe o of CDuee) (59 The e
ssions in patterns and types will then be examined (§4) with an example p
reted g thse ot of the s (8. Fiaty, the report will e conctded b locking
back at the use of regular expressions in the types and pattens of the CDuce language (S6).

languag

2.CDuce
The pap [CDuceXCGPL)prsets CDuce i et s n ideo
the language. oints raised in the paper shal

inoducton t he CDuce langunge: wht 1

resource to use to understand
I be summariscd in order to present a general
. how it came about and how it works.

Asstated previously, the CDuce language is a typed functional programming language designed o
o the procesing of XML dt ity n heangue whie il being “genrlpupos”

mnuvmmhlw The Cuce prjec was an offshoor extenson ofthe XDuce lang
designed to be less “XML-centric”. To this effect, the CDuce languag
addressing - what the paper referred to as - limitations in three areas:

e extends upon XDuce by

The type system allowed the user to create types specific to dealing with XML data,
which included having “regular expression types™ and “type-based patterns”. The use of the

See the course web page for two good submissions from last year.

Suitable working practices

Working practices

@ Start with a blank document; all the words must be yours.
@ Do not cut and paste from other documents.
e Except for direct quotations, which must have source declared.

@ Do not let others read your text; nor read theirs.

Aims of this coursework

@ To learn about the chosen topic
@ To improve researching and learning skills

@ To demonstrate said knowledge and skills

The tangible outcome is a document, composed and written by you,
demonstrating what you have learnt.

© Summary

Topics

e Information flow in Jif

e Memory annotations in Deputy

e Software Transactional Memory in Haskell

e Petascale computing with Hadoop

e Multiple inheritance in Scala with traits and mixins

Intermediate report

e Topic choice, three initial references, screenshot.
e Due this Friday, 13th February.

Final report

Introduction and discussion of the topic;
example annotated code, screenshots;
resources consulted and related work;
concluding summary and opinions;
bibliography with proper references.
Due: Friday 6th March.

	Course schedule
	Reminder of topics
	An example: Alice ML
	Writing and submitting
	Summary

