
http://www.inf.ed.ac.uk/teaching/courses/apl/

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL3: A little OCaml

Ian Stark

School of Informatics
The University of Edinburgh

Monday 19 January 2009
Semester 2 Week 2

http://www.inf.ed.ac.uk/teaching/courses/apl/
http://www.ed.ac.uk
http://www.inf.ed.ac.uk/~stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Outline

1 OCaml overview

2 Some type system choices

3 OCaml example: Region quadtrees

Ian Stark APL3 2009-01-19

Outline

1 OCaml overview

2 Some type system choices

3 OCaml example: Region quadtrees

Ian Stark APL3 2009-01-19

Objective Caml

Objective Caml (OCaml) is:
A strongly-typed functional language, a version of ML; with
high-performance native-code compilers for many processors;
as well as a portable bytecode compiler;
and an interactive execution environment.

Features include:
First-class higher-order functions;
Imperative actions, arrays, mutable state;
Objects, classes, multiple inheritance;
Parametric polymorphism, exceptions;
Records, variants, and general algebraic datatypes.

Ian Stark APL3 2009-01-19

Simple statements

let x = 3 in x+x;;
− : int = 6

let square x = x∗x;;
val square : int −> int = <fun>

let rec factorial n = if n < 1 then 1 else n∗(factorial(n−1));;
val factorial : int −> int = <fun>

factorial (square 3);;
− : int = 362880

Ian Stark APL3 2009-01-19

Type constructions

("Thursday", 9, 10) : string ∗ int ∗ int

[2. ; 2.5 ; 3.] : float list

[| ’a’; ’b’ |] : char array

fun x y −> (x+y)/2 : int −> int −> int

type day = { month:string; date:int }
{ month = "Jan"; date = 17 } : day

type shape = Circle of int | Rectangle of int∗int

type ’a tree = Node of ’a ∗ ’a tree ∗ ’a tree | Leaf

Ian Stark APL3 2009-01-19

Outline

1 OCaml overview

2 Some type system choices

3 OCaml example: Region quadtrees

Ian Stark APL3 2009-01-19

Nominal vs. Structural

Java uses predominantly nominative or nominal typing: the only relations
between types are those stated explicitly by the programmer.

class pair1 { int x; int y; } // Pair of integers
class pair2 { int x; int y; } // Also a pair of integers

pair1 a = new pair1(); // Create one new pair object
pair2 b = a; // Assign it to another

// Get an "incompatible types" error

This is by design:
it can help with safe programming; and
it certainly helps the compiler with typechecking.

Ian Stark APL3 2009-01-19

Nominal vs. Structural

In contrast, OCaml uses structural typing: the properties of types can be
deduced from their structure.

type pair1 = int ∗ int (∗ Type abbreviation ∗)
type pair2 = int ∗ int (∗ An identical one ∗)

let a : pair1 = (5,6) (∗ Create a new pair ∗)
let b : pair2 = a (∗ Copy it to another ∗)

(∗ No error ∗)

This is also by design. However, if we want nominal typing, then we can
enforce it with datatype wrapping:

type pair1 = Pair1 of int ∗ int
type pair2 = Pair2 of int ∗ int

Ian Stark APL3 2009-01-19

Polymorphism: Parametric and OO

Many OCaml functions can be used at several types: they are polymorphic.

List.map;;
− : (’a −> ’b) −> ’a list −> ’b list = <fun>
List. filter ;;
− : (’a −> bool) −> ’a list −> ’a list = <fun>

Even as the types change, the action of the function is essentially the
same. This is parametric polymorphism, and is heavily used in functional
programming languages like Haskell and ML.

OCaml automatically infers polymorphic types where possible:

let id x = x;; # let diag z = (z,z);;
val id : ’a −> ’a = <fun> val diag : ’a −> ’a ∗ ’a = <fun>

Ian Stark APL3 2009-01-19

Polymorphism: Parametric and OO

Parametric polymorphism was added in Java 5 as generics, through types
like List<String> and methods with a type parameter:

public interface Iterator<E> {
E next();
boolean hasNext();
void remove();

}

The same feature arrived in C# 2.0, and generics are now extensively used
in the standard libraries of both languages.

Note that C++ templates can achieve a similar effect (and many others),
but at the cost of duplicating code during compilation. The ideal for para-
metric polymorphism is that because the action is the same, the executing
code should be the same too.

Ian Stark APL3 2009-01-19

Polymorphism: Parametric and OO

Parametric polymorphism was added in Java 5 as generics, through types
like List<String> and methods with a type parameter:

public interface Iterator<E> {
E next();
boolean hasNext();
void remove();

}

The design of generics in Java evolved from Haskell, via the research lan-
guages Pizza and GJ.

Haskell Generics are something else again...

Maurice Naftalin, Phil Wadler.
Java Generics and Collections.
O’Reilly, 2006.

Ian Stark APL3 2009-01-19

http://oreilly.com/catalog/9780596527754/index.html

Polymorphism: Parametric and OO

Object-oriented code is polymorphic when it can be used with objects from
different classes:

Shape[] shapeArray;
...
for (Shape s : shapeArray) // For every shape in the array ...
{ s.draw(); } // ... invoke its "draw" method.

Each Shape s may actually be a Square, Circle or other implementation of
Shape, each with its own implementation of draw.

In Java, a class-based language, this kind of polymorphism is closely tied
to subtypes and inheritance. In object-based or dynamically-typed
languages, it need not be.

With parametric polymorphism, the same must happen at every type.
Here, with ad-hoc polymorphism, a different thing may happen at each
type.

Ian Stark APL3 2009-01-19

Outline

1 OCaml overview

2 Some type system choices

3 OCaml example: Region quadtrees

Ian Stark APL3 2009-01-19

Example: Quadtrees (1/3)

A region quadtree represents
two-dimensional spatial data, such as
images, with variable resolution. Where
information density is nonuniform it is more
efficient than a simple two-dimensional array.

type quadtree = Clear
| Black | White | Red | Green | Blue
| Tree of quadtree ∗ quadtree ∗ quadtree ∗ quadtree

type picture = { title : string; image: quadtree }

Ian Stark APL3 2009-01-19

Example: Quadtrees (2/3)

let rec isclear : quadtree −> bool
= fun qt −>

match qt with
Clear −> true

| Tree (a,b,c,d) −> isclear a && isclear b
&& isclear c && isclear d

| _ −> false

(∗ nonblank : picture −> bool ∗)
let nonblank pic = not (isclear pic.image)

Ian Stark APL3 2009-01-19

Example: Quadtrees (3/3)

let rec chop : int −> quadtree −> quadtree
= fun n qt −>

if n <= 0 then Clear
else

match qt with
Tree (a,b,c,d) −> Tree (chop (n−1) a, chop (n−1) b,

chop (n−1) c, chop (n−1) d)
| colour −> colour

(∗ thumbnail : picture −> picture ∗)
let thumbnail { title = t; image = i } = { title = t; image = chop 8 i }

(∗ summary : picture list −> picture list ∗)
let summary pics = List.map thumbnail (List.filter nonblank pics)

Ian Stark APL3 2009-01-19

Homework

Find out what an octree is. (Bonus: Why would you use one in
Microsoft’s XNA game development toolkit?)

Copy and paste the quadtree code and run it in OCaml.

Write a function to compute the nonblank area of a quadtree.

Write a function to display a quadtree: either by converting it to a list
of strings, or (better) using the OCaml graphics library.

Ian Stark APL3 2009-01-19

http://caml.inria.fr/pub/docs/manual-ocaml/manual039.html

Summary

OCaml is a functional programming language with a rich static type
system.
Where Java uses nominal typing, OCaml uses structural typing.
Type polymorphism may be parametric (OO “generic”) or ad-hoc
(classic OO).
We saw some example OCaml code for manipulating quadtrees, a
structure for variable-resolution 2-dimensional spatial data.

Benjamin C. Pierce.
Types and Programming Languages.
MIT Press, 2002

Ian Stark APL3 2009-01-19

http://www.cis.upenn.edu/~bcpierce/tapl/index.html

	OCaml overview
	Some type system choices
	OCaml example: Region quadtrees

