
http://www.inf.ed.ac.uk/teaching/courses/apl/

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL2: Types and type systems

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 15 January 2009
Semester 2 Week 1

http://www.inf.ed.ac.uk/teaching/courses/apl/
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Some types

A selection of types from some languages.

C/C++

int, long, float, unsigned int, char
int [], char∗, char&, int(∗)(float,char)

OCaml

int , int64, bool, char, string, unit
string∗string, int list , bool array
int−>int, int−>string−>char, ’a list −> ’a list

Java

Object, byte[], boolean
StringBuffer, LinkedList, TreeSet, ArrayList<String>
IllegalPathStateException, BeanContextServiceRevokedListener

Ian Stark APL2 2009-01-15



What do people do with types?

Type checking
Static type checking
Dynamic type checking
Type annotation
Type inference

Subtyping
Structural typing
Nominative typing
Duck typing
Effect types

Ian Stark APL2 2009-01-15



What is a type system?

A type system is a syntactically defined subset T of programs such that:

P ∈ T =⇒ Compile(P) |= φ

(read: “if P is in T then Compile(P) satisfies φ”)

where Compile(P) is the object code corresponding to P and φ is some
desired property of its execution.

For example,

T = “well-typed Java programs”
φ = “methods are always correctly invoked”

Slogan: Well-typed programs cannot go wrong. [Robin Milner, 1978]

Ian Stark APL2 2009-01-15



Java

Java is serious about abstraction

Java works almost entirely through class-based object-oriented
programming; it encourages the use of abstract classes through inheritance
and interfaces; and it does not expose the private workings of classes and
packages.

Java is serious about typing

Java has strong static typing: all programs are checked for
type-correctness at compile-time. Bytecode is checked again when classes
are loaded, by the bytecode verifier, before execution. The recent
introduction of generics extends the power of the type system.

Even so, things do not always go as well as one might hope...

Ian Stark APL2 2009-01-15



Subtyping arrays in Java

Java has subtyping: a value of one type may be used at any more general
type. So String 6 Object, and every String is an Object.

Not all is well with Java types

String[] a = { "Hello" }; // A small string array
Object[] b = a; // Now a and b are the same array
b[0] = Boolean.FALSE; // Drop in a Boolean object
String s = a[0]; // Oh, dear
System.out.println(s.toUpperCase()); // This isn’t going to be pretty

This compiles without error or warning: in Java, if S 6 T then S[] 6 T[].

Except that it isn’t. So every array assignment gets a runtime check.

Ian Stark APL2 2009-01-15



Subtype variance

The issue here is with parameterized types like String[] and List<Object>;
or in OCaml (’a list −> ’a list) and (’a ∗ ’b).

Suppose some type A<X> depends on type X, and types S 6 T. Then the
dependency is:

Covariant if A<S> 6 A<T> e.g. pair A<X> = X ∗ X

Contravariant if A<S> > A<T> e.g. test A<X> = X→bool

Invariant if neither of these holds. e.g. array A<X> = X[]

For example, in the Scala language, type parameters can be annotated
with variance information: List[+T], Function[−S,+T].

In Java, arrays are typed as if they were covariant. But they aren’t. We
shall revisit this later. . .

see also parameter covariance in Eiffel

Ian Stark APL2 2009-01-15



Homework

By the next lecture, on Monday:
Test out the Java array subtyping example, and confirm that (a) it
compiles, and (b) there is a type error when run.
Read the Java fable Execution in the Kingdom of Nouns.

If you are uncertain about OCaml programming, try these online guides:
Chapter 1 of OCaml for Scientists
The Objective Caml Tutorial
Developing Applications with Objective Caml
For those who already know Standard ML, Andreas Rossberg has
written a handy conversion guide.

Ian Stark APL2 2009-01-15

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://www.ffconsultancy.com/products/ocaml_for_scientists/chapter1.html
http://www.ocaml-tutorial.org/
http://caml.inria.fr/pub/docs/oreilly-book/
http://www.mpi-sws.mpg.de/~rossberg/sml-vs-ocaml.html


Summary

Languages use types and type systems for several reasons.

A type system is a syntactically defined subset of programs which are
certain to have some desired property.

Java has covariance subtyping of arrays, which can cause runtime
type errors.

Ian Stark APL2 2009-01-15


	Opening
	Closing

