Advances in Programming Languages

APL15: Concurrency abstractions

David Aspinall

School of Informatics
The University of Edinburgh

Monday 2 March 2009
Semester 2 Week 8

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da

Techniques for concurrency

This is the second of three lectures presenting some
programming-language techniques for managing concurrency.

@ Introduction, basic Java concurrency
@ Concurrency abstractions

@ Concurrency in some other languages

@ Data abstractions

Managing synchronization

How do we manage synchronization across many objects in a system?

A synchronization policy is necessary to describe which locks are used to
protect which pieces of shared data, in which order they are obtained. The
programmer should explain which classes are considered thread safe,
especially for library classes.

Informally, a thread safe class is a class whose methods may be invoked
from different threads at the same time. A precise definition is much more tricky.

@ a good idea to document this, e.g. with an annotation @ThreadSafe.

Managing synchronization

How do we manage synchronization across many objects in a system?

A synchronization policy is necessary to describe which locks are used to
protect which pieces of shared data, in which order they are obtained. The
programmer should explain which classes are considered thread safe,
especially for library classes.

Informally, a thread safe class is a class whose methods may be invoked
from different threads at the same time. A precise definition is much more tricky.

@ a good idea to document this, e.g. with an annotation @ThreadSafe.

A very naive approach to concurrency problems is to fix concurrency bugs
by successively adding more uses of synchronize. Just like deleting
statements that cause runtime errors, this rarely succeeds (why not?).

Thread safe collections

Some basic Java collection classes are not thread safe, but convenient
wrapper methods can add synchronization around accessor methods.

List<Customer> customerList =
Collections.synchronizedList(new ArrayList<Customer>());

addCustomers(customerList);

for (Customer c : customerList) {
processCustomer(c);
}

Despite using a synchronized list, it is still possible for this code to throw
ConcurrentModificationException. Why? How could it be avoided?

Thread safe collections

Some basic Java collection classes are not thread safe, but convenient
wrapper methods can add synchronization around accessor methods.

List<Customer> customerList =
Collections.synchronizedList(new ArrayList<Customer>());

addCustomers(customerList);

for (Customer c : customerList) {
processCustomer(c);
}

The addCustomers call leaks the reference to the customer list. It's possible
that another thread retains this and manipulates the list after return.

Thread safe collections

Some basic Java collection classes are not thread safe, but convenient
wrapper methods can add synchronization around accessor methods.

List<Customer> customerList =
Collections.synchronizedList(new ArrayList<Customer>());

addCustomers(customerList);

for (Customer c : customerList) {
processCustomer(c);
}

The implicit iteration in the for loop may interact with another thread that
is modifying the list. We must lock the whole list while iterating.

Thread safe collections

Some basic Java collection classes are not thread safe, but convenient
wrapper methods can add synchronization around accessor methods.

List<Customer> customerList =
Collections.synchronizedList(new ArrayList<Customer>());

addCustomers(customerList);

for (Customer c : customerList) {
processCustomer(c);

Confusingly, even single-threaded code can throw ConcurrentModificationException, when the
API contract of call sequences is violated by modifying during iteration; a fail fast policy is to

detect this between calls and abort.

Concurrent collections

The drawback with synchronized compound objects is that further locking
may be required when executing compound operations, so we haven't
automatically solved consistency problems.

More crucially, they may become a serialization bottleneck as serialising
accesses prevents concurrency.

The concurrent collections introduced in Java 5.0 allow a remedy.

Interfaces: Classes:
@ Queue @ ConcurrentLinkedQueue
o List o CopyOnWriteArrayList
e ConcurrentMap @ ConcurrentHashMap
@ BlockingQueue @ ArrayBlockingQueue

These live in the package java. util .concurrent alongside other utilities.
They use various mechanisms to give thread safe results, including
non-blocking algorithms and lower-level features such as atomic variables.

Queues and producer-consumer patterns

The producer-consumer pattern is a common way to decouple jobs and
achieve scalable parallelism.

A queue acts as thread-safe “glue” which allows independent tasks to
proceed on each side without interfering. Consumers block when the
queue is empty; producers block when the queue full.

Producer

Consumer
threads

Queue threads

BlockingQueue access methods

Throws ex'n Special value Blocks Times out
Insert add(e) offer(e) put(e) offer(e, time, unit)
Remove remove() poll() take() poll(time, unit)

Examine element() peek()

© Control abstractions

Application frameworks

Application frameworks separate duties and isolate subparts of a system by
using different threads for different tasks. For example:

@ The Java Virtual Machine runs a thread for executing the program's
main() method, which may start further threads; it also runs daemon
threads for housekeeping tasks such as garbage collection.

@ Swing applications create a GUI thread which uses an input event
queue; all GUI operations are confined to the GUI thread.

@ J2EE application servers use a thread pool to use for container tasks.

To manage finer grained concurrency in a system, some form of additional
management on top of threads is often desirable, for example, to manage
work queues and tasks effectively.

Finer granularity allows applications to avoid excessive overhead, by
reducing the amount of context switching and the load on a single system
level scheduler (which may have hard limits).

Tasks and Executors

Effective concurrent programs subdivide work into tasks, which are as
independent as possible. Some types of tasks may have to be executed in
a given sequence, one at a time. Others may be executed concurrently in
multiple threads.

Java provides executors as an abstraction for work queues which execute
tasks. An executor usually encapsulates one or more threads.

public interface Runnable { Executor workerExecutor =
void run(); Executors.newFixed ThreadPool(5);
}
// schedule 20 jobs immediately
public interface Executor { for (int i = 0; i<20; i++) {
// execute command at some time WorkerJob job = new WorkerJob();
void execute(Runnable command); workerExecutor.execute(job);

} }

Simple Runnable tasks do something and then finish. To communicate a
result, we use futures, which are an abstraction of asynchronous
result-returning computations. Futures can also be managed by executors.

FutureTask<Integer> searchFuture =
new FutureTask<String>(new Callable<String>() {
public interface Callable<V> { public String call() {

V call() throws Exception; return searcher.findMatch(target);
} D
public interface Future<V> { // search while we do something else
V get(); executor.execute(searchFuture);
// maybe blocking
void cancel(); if (searchFuture.isDone()) {
boolean isCancelled(); result = searchFuture.get();
boolean isDone(); } else {
} result = "not found";

searchFuture.cancel();

}

Java concurrency abstractions

Java provides concurrency extensions in the library java. util .concurrent.
These include:

@ concurrent collections which include scalable thread-safe classes for
lists, maps and queues;

@ task management at a finer granularity than threads, using executors
which provide a range of thread pooling and (simple) scheduling
strategies.

e Java 7 will have a fork-join library for managing tasks which subdivide
themselves, and executors which schedule tasks with work stealing.

@ futures which are asynchronous tasks that return results.

Similar abstractions are available in other languages and libraries.

	Data abstractions
	Control abstractions

