
Advances in Programming Languages
APL6: JML — The Java Modeling Language

Ian Stark

School of Informatics
The University of Edinburgh

Monday 28 January 2008
Semester 2 Week 4

http://www.inf.ed.ac.uk/~stark

Topic: Some Formal Verification

This is the middle of three lectures about some techniques and tools for
formal verification, specifically:

Hoare logic
JML: The Java Modeling Language
ESC/Java 2: The Extended Static Checker for Java

Ian Stark APL6 2008-01-28

Outline

1 Introduction

2 Samples of JML

3 JML Tools

Ian Stark APL6 2008-01-28

Outline

1 Introduction

2 Samples of JML

3 JML Tools

Ian Stark APL6 2008-01-28

Hoare Logic

Hoare assertions {P} C {Q} state that if precondition P holds before
running code C then postcondition Q will hold afterwards.
Assertions ` {P} C {Q} can be derived using Hoare rules; they may
also be tested against a semantics � {P} C {Q}.
This allows logical reasoning about program behaviour: notably in
formal specification and verification.
Hoare assertions are widely used in tools and languages for formal
methods. (e.g. Praxis SPARK Examiner)

Assertions may be strengthened to contracts for code, placing
obligations on both caller and called. (e.g. Eiffel)

Ian Stark APL6 2008-01-28

Model-Based Specification

Modeling (sic) is an abstraction technique for system design and
specification.

A model is a representation of the desired system. It differs from a
complete implemented system in that:

A model might capture only some aspect of the system;
A model might be partial, leaving some parts unspecified;
A model might not be executable.

Any implementation of the system can then be compared to the model.
Sometimes the model is iteratively refined to give the implementation.

Sample applications of modeling in computer software development:
VDM, the Vienna Development Method;
The Z notation, the B language and B method;
UML, the Unified Modeling Language, a standardized general-purpose
modeling language for object-oriented software engineering.

Ian Stark APL6 2008-01-28

The Java Modeling Language

The Java Modeling Language, JML, combines model-based and contract
approaches to specification.

Some design features:

The specification lives close to the code
Within the Java source, in annotation comments /∗@...@∗/

Uses Java syntax and expressions
Rather than a separate specification language.

Common language for many tools and analysis
Tools add their own extensions, and ignore those of others.

Web site: jmlspecs.org

Ian Stark APL6 2008-01-28

jmlspecs.org

Outline

1 Introduction

2 Samples of JML

3 JML Tools

Ian Stark APL6 2008-01-28

JML: Basics

public class Account {
private int credit;

/∗@ requires credit > amount && amount > 0;
@ ensures credit > 0 && credit == \old(credit) − amount;
@∗/

public int withdraw(int amount) {
...

}
}

JML conditions combine logical formulae (&&,==) with Java expressions
(credit, amount). Expressions must be pure: no side-effects.

Ian Stark APL6 2008-01-28

JML: Exceptions

public class Account {
private int credit;

/∗@ requires credit > amount && amount > 0;
@ ensures credit > 0 && credit == \old(credit) − amount;
@ signals (RefusedException) credit == \old(credit)
@∗/

public int withdraw throws RefusedException (int amount) {
...

}
}

Where ensures speaks about normal termination, signals specifies
properties of the state after exceptional termination.

Ian Stark APL6 2008-01-28

JML: Logical Formalae

public class IntArray {
public int[] contents;

/∗@ requires (\forall int i,j;
@ 0<i && i<j && j<contents.length;
@ contents[i] <= contents[j]);
@
@ ensures contents[\result] == value || \result == −1
@∗/

public int search (int value) { ... }
}

The search routine requires that array contents be sorted on entry. This
would, for example, be necessary if it used binary chop to locate value.

Ian Stark APL6 2008-01-28

JML: Class Invariants

public class IntArray {
public int[] contents;

/∗@ invariant (\forall int i,j;
@ 0<i && i<j && j<contents.length;
@ contents[i] <= contents[j]);
@∗/

/∗@ ensures contents[\result] == value || \result == −1
@∗/

public int search (int value) { ... }
}

Now contents must be sorted whenever it is visible to clients of IntArray.

Ian Stark APL6 2008-01-28

JML: Assumptions and Assertions

/∗@ assume j∗j < contents.length @∗/

contents[j∗j] = j;

...

a[0] = complexcomputation(a,v);

/∗@ assert (\forall int i; 1<i && i<10; a[0] < a[i]) @∗/

An assumption may help a static analysis tool; an assertion must always
be checked.

Ian Stark APL6 2008-01-28

JML: Models and Ghosts

public class IntArray {
public int[] contents;

/∗@ model int total;
@ represents total = arraySum(contents)
@∗/

/∗@ ghost int cursor;
@ set cursor = contents.length / 2
@∗/

...
}

A model field represents some property of the model that does not appear
explicitly in the implementation.

A ghost field is a local variable used only by other parts of the specification.
Ian Stark APL6 2008-01-28

JML: Model Methods and Classes

/∗@ ensures \result = (\sum int i; 0<i && i<a.length; a[i])
@
@ public model int arraySum(int[] a);
@∗/

/∗@ public model class JMLSet { ... } @∗/

Specifications may refer to model methods and even entire model classes
to represent and manipulate desired system properties.

JML provides specifications for the standard Java classes, as well as a
library of model classes for mathematical constructions like sets, bags,
integers and reals (i.e. of arbitrary size and precision).

Ian Stark APL6 2008-01-28

Outline

1 Introduction

2 Samples of JML

3 JML Tools

Ian Stark APL6 2008-01-28

JML Tools: Running and Testing

JML annotations can be used to drive various runtime checks.

The jmlc compiler inserts runtime tests for every assertion; if they fail,
error messages provide static and dynamic information about the
failure.
The jmlunit tool creates test classes for JUnit based on preconditions,
postconditions and invariants. These automatically exercise and test
assertions made in the code.

They also serve as documentation:

The jmldoc tool generates human-readable web pages from JML
specifications, extending the existing javadoc tool.

Ian Stark APL6 2008-01-28

JML Tools: Static Analysis

The ESC/Java 2 framework carries out a range of static checks on
Java programs. These include formal verification of JML annotations
using a fully-automated theorem prover.
Controversially, the checker is neither sound nor complete: it warns
about many potential bugs, but not all actual bugs.
This is by design: the aim is to find many possible bugs, quickly.

The LOOP tool also attempts to verify JML specifications. Some can
be done automatically; where this is not possible it provides proof
obligations for the interactive PVS theorem prover.

The JACK tool generates proof obligations from JML annotations on
Java and JavaCard programs; these can then be tackled with a variety
of automatic and semi-automatic theorem provers.

Ian Stark APL6 2008-01-28

More tools

The Key dynamic logic tool has a JML front end.
Krakatoa is another verification tool accepting JML.
Jive, the Java Interactive Verification Environment, uses JML.
Houdini will suggest JML annotations and test them with ESC/Java.
Daikon analyses program runs to suggest likely JML invariants.

Finally:
Microsoft’s Spec# is to C# as ESC/Java 2 is to Java.

Ian Stark APL6 2008-01-28

http://www.key-project.org/
http://krakatoa.lri.fr/
http://softech.informatik.uni-kl.de/twiki/bin/view/Homepage/Jive
http://groups.csail.mit.edu/pag/daikon/
http://research.microsoft.com/specsharp/

Summary

The Java Modeling Language

JML combines model-based and contract specification

Annotations within code: requires, ensures, . . .

Provides model fields, methods and classes.

Common language for many tools: runtime checks, static analysis,. . .

Ian Stark APL6 2008-01-28

Homework

The next lecture will be on ESC/Java 2. Before Thursday, read the
following two short articles:

Leavens and Cheon. Design by Contract with JML.
Burdy et al. An overview of JML tools and applications.

Both available from http://jmlspecs.org

Extra challenge activity: install and run ESC/Java 2.
(Tips: Java 1.4, Eclipse 3.3, ESC/Java 2 Eclipse plugin)

Ian Stark APL6 2008-01-28

http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://www.jmlspecs.org/OldReleases/sttt04.pdf
http://jmlspecs.org

	Introduction
	Samples of JML
	JML Tools

