
Advances in Programming Languages
APL4: Coursework Assignment

Ian Stark

School of Informatics
The University of Edinburgh

Monday 21 January 2008
Semester 2 Week 3

http://www.inf.ed.ac.uk/~stark


Outline

1 On lecture homework

2 Assignment topics

3 Assignment timing and format

4 Plagiarism notice

5 Summary

Ian Stark APL4 2008-01-21



Outline

1 On lecture homework

2 Assignment topics

3 Assignment timing and format

4 Plagiarism notice

5 Summary

Ian Stark APL4 2008-01-21



Quadtree example?

Video by Handkor
http://handkor.googlepages.com/

Early test sequence for “Hippocrates’s Dilemma”

Ian Stark APL4 2008-01-21

http://handkor.googlepages.com/


Octree example

Video by Handkor
http://handkor.googlepages.com/
Collision test — 256 marbles & gravity

Ian Stark APL4 2008-01-21

http://handkor.googlepages.com/


Aims of exercises

The aims of the homework exercises set in lectures include:

To review lecture material

To give some context for understanding the lectures

To provide other sources and views on the lecture topic

To help with learning by exploring the subject

Crucially, these effects arise from doing the exercises. They are not
assessed, nor would this necessarily be useful: they are intended to be
self-validating (i.e. you can tell when you have succeeded)

Although your coursework reports will be assessed, most of this also
applies there: the purpose is for you to find out and learn new things.

Ian Stark APL4 2008-01-21



Outline

1 On lecture homework

2 Assignment topics

3 Assignment timing and format

4 Plagiarism notice

5 Summary

Ian Stark APL4 2008-01-21



Deputy

Memory annotations in Deputy

The Deputy project at Berkeley is developing a C compiler that can
prevent a number of common programming errors.

In particular, Deputy provides type annotations with which programmers
can describe the intended behaviour of pointers. The compiler will then
apply suitable static and run-time checks to make sure these intentions are
satisfied.

Ian Stark APL4 2008-01-21



CDuce

Regular expression types and patterns in CDuce

The CDuce programming language is designed for processing XML. It is an
ML-style functional language, with special features for reading,
transforming, and creating XML trees.

Notably, it uses regular expressions in both types and patterns to describe
code that queries and manipulates XML trees, allowing the compiler to
statically check that programs only ever generate valid XML.

Ian Stark APL4 2008-01-21



Haskell STM library

Software Transactional Memory in Haskell

The STM library for the Glasgow Haskell Compiler (GHC) provides
high-level language support for coordinating concurrent computation,
where multiple threads act simultaneously on shared datastructures.

Remarkably, STM does this without using locks. Instead, it uses efficient
and optimistic software transactions, giving freedom from deadlock and
promoting non-interfering concurrency. These transactions are modular
and composable: small transactions can be glued together to make larger
ones. Moreover, implementing this within the Haskell type system gives
static guarantees that transactions are used correctly.

Ian Stark APL4 2008-01-21



Futures and promises

Futures and promises in Alice ML

The Alice ML language is based on Standard ML, with several extensions
to support distributed concurrent programming.

In particular it provides futures and promises for lightweight concurrency:
a future represents the result of a computation that may not yet be
available, and a promise is a handle to build your own future.

Ian Stark APL4 2008-01-21



Jif

Information flow in Jif

The Jif compiler extends the Java language with annotations for static
analysis of security properties relating to the flow of information.

These annotations describe restrictions on how information is to be used:
which principals control which information, and what they trust other
principals to do with it. This gives increased assurance that trusted and
untrusted information is used only according to explicit security policies.

Ian Stark APL4 2008-01-21



Outline

1 On lecture homework

2 Assignment topics

3 Assignment timing and format

4 Plagiarism notice

5 Summary

Ian Stark APL4 2008-01-21



Dates and submission

Week 3 Monday 21 January: Topic announcement

Week 4 Friday 1 February: Choose topic

Submit a file choice.txt containing the following:

Which topic you have chosen

Three suitable references

One reference must be to a published paper; the other two may be too, but could

also be white papers, web tutorials, manuals, or similar. In all cases provide

enough information for someone else to obtain the document.

Week 9 Friday 7 March: Report due

Submit a file apl.pdf containing your report in PDF. The recommended
method for creating this is pdflatex with the article document class.

In addition, OpenOffice is freely available for Windows and Linux, installed on
Informatics machines, and can write PDF. Mac OS X natively creates PDF.
Microsoft provide PDF output as a plugin for Word 2007.

Ian Stark APL4 2008-01-21

http://www.openoffice.org


Suggested outline

Heading Title, date, author

Abstract This report describes ...

Introduction Content summary, overview of report structure

Context The problem domain

〈Main topic〉 What it is, how it works, advantages and limitations

Example Annotated code, explanation, screenshot

Salt: the example must in some way concern travel or
transport (e.g. bicycle shop bills, tracking trucks, . . . )

Resources For notable resources used (article, tutorial, manual), give a
summary in your own words of what it contains

Related work Other approaches to the problem

Conclusion What 〈topic〉 does, good and bad points

Bibliography Full references for all resources used

Total 8–10 A4 pages. See course web pages for further details.
Ian Stark APL4 2008-01-21



Outline

1 On lecture homework

2 Assignment topics

3 Assignment timing and format

4 Plagiarism notice

5 Summary

Ian Stark APL4 2008-01-21



Plagiarism

University of Edinburgh
Undergraduate Assessment Regulations 2007/08

Regulation 14
14.1 Plagiarism is the act of copying or including in one’s own
work, without adequate acknowledgement, intentionally or
unintentionally, the work of another.

http://www.acaffairs.ed.ac.uk/Regulations/Assessment/07-08/UG.htm#Reg14

See also:

University guidance
http://www.aaps.ed.ac.uk/regulations/Plagiarism/Intro.htm

Informatics policy
http://www.inf.ed.ac.uk/teaching/plagiarism.html

Ian Stark APL4 2008-01-21

http://www.acaffairs.ed.ac.uk/Regulations/Assessment/07-08/UG.htm#Reg14
http://www.aaps.ed.ac.uk/regulations/Plagiarism/Intro.htm
http://www.inf.ed.ac.uk/teaching/plagiarism.html


Suitable working practices

Working practices

Start with a blank document; all the words must be yours.

Do not cut and paste from other documents.

Except for direct quotations, which must have source declared.

Do not let others read your text; nor read theirs.

Aims of this coursework

To learn about the chosen topic

To improve researching and learning skills

To demonstrate said knowledge and skills

The tangible outcome is a document, composed and written by you,
demonstrating what you have learnt.

Ian Stark APL4 2008-01-21



Outline

1 On lecture homework

2 Assignment topics

3 Assignment timing and format

4 Plagiarism notice

5 Summary

Ian Stark APL4 2008-01-21



Summary

Topic choices

Memory annotations in Deputy

Regular expression types and patterns in CDuce

Software Transactional Memory in Haskell

Futures and promises in Alice ML

Information flow in Jif

Coursework and learning

Lecture exercises are there to be done

Note the essay plan

All your own work

The aims of the coursework are to support learning

Ian Stark APL4 2008-01-21


	On lecture homework
	Assignment topics
	Assignment timing and format
	Plagiarism notice
	Summary

