
ANLP Tutorial Exercise Set 5 (for tutorial groups in week 10)

v1.1
School of Informatics, University of Edinburgh
Sharon Goldwater

Exercise 1: First-order logic

a) (a) False

(b) {Zoot,Spot}
(c) {(Mary,Zoot),(Li,Spot)}
(d) {Spot} (note this is a set, not just an entity)

(e) True (because the antecedent is false)

(f) False

(g) False

(h) True

b) (a) All rabbits are furry

(b) Franz helps Marie

(c) Liang eats a sandwich

(d) Liang eats a sandwich with a fork

(e) All the students (separately) lift Marie (or “Each student lifts Marie”): there is a sepa-
rate lifting event for each student

(f) All the students (together) lift Marie: there is a single lifting event for all students

c) (a) ∃e.hating(e)∧hater(e,Fiona)∧hatee(e,Ewan)

(b) There are two meanings, though not due to any form of ambiguity we’ve discussed
before. The ambiguity here is caused by the verb. (a) Partha is currently eating a pizza:
∃e.eating(e)∧ eater(e,Partha)∧∃x.pizza(x)∧ eaten(e,x) (or perhaps we might want
to think of “pizza” as a mass noun and treat it as an entity, yielding ∃e.eating(e)∧
eater(e,Partha)∧eaten(e, pizza)). OR (b) Partha habitually or in principle eats pizza:
It is much less clear how to translate this sentence into FOL, since our usual event
semantics assume the existence of a single event with particular properties. In this
case there are potentially many (or no) actual pizza-eating events. (I don’t know how
a semanticist would deal with this case, but to me it seems to share some of the same
problems as so-called generic statements like “birds can fly” or “cats are furry”, whose
semantics are very much a subject of research.)

(c) ∀x.student(x)⇒ ∃e.liking(e)∧ liker(e,x)∧ likee(e,Juan) (Note that placing the ∃e
outside the ∀x would be a bit weird: it suggests that all students participate in a single
collective liking event.

(d) Quantifier scope ambiguity leads to two meanings. (a) There is a single student who
likes all classes: ∃x.student(x)∧∀y.class(y)⇒ ∃e.liking(e)∧ liker(e,x)∧ likee(e,y)
OR (b) Each class is liked by at least one student: ∀x.class(x) ⇒ ∃y.student(y)∧
∃e.liking(e)∧ liker(e,y)∧ likee(e,x)

(e) ∃e.seeing(e)∧ seer(e,Ella)∧ seen(e,Ella)

(f) ∀x.Tuesday(x)⇒∃e.dancing(e)∧dancer(e,Ella)∧ time(e,x) (or perhaps replace the
final conjunct with something like during(e,x)).

1



Exercise 2: Semantic analysis

a) The syntactic trees are:

S
�� HH

NP

Sam

VP

Vi

sees

S

�
��

H
HH

NP
�� HH

Det

the

Nom

N

dog

VP

Vi

walks

In the first tree, the meanings attached to each tree node are as follows:

• Sam, NP: λP.P(Sam)

• sees, Vi, VP: λx.∃e.seeing(e)∧ seer(e,x)

• S: derived as NP.sem(VP.sem), which is

(λP.P(Sam))[λx.∃e.seeing(e)∧ seer(e,x)] = (λx.∃e.seeing(e)∧ seer(e,x))[Sam]

= ∃e.seeing(e)∧ seer(e,Sam)

I’ve added a little more notation to keep things clear: I put round brackets around
the lambda expression that’s about to undergo lambda reduction, and square brackets
around the expression that’s about to be substituted in place of the lambda variable.
This will help especially with more complicated reductions below.

In the second tree, the meanings attached to each tree node are as follows:

• the, Det: λP.λQ.∃!x.P(x)∧Q(x)

• dog, N, Nom: λx.dog(x)

• walks, Vi, VP: λx.∃e.walking(e)∧walker(e,x)

• NP (the dog): derived as Det.sem(Nom.sem), which is

(λP.λQ.∃!x.P(x)∧Q(x))[λx.dog(x)] = (λP.λQ.∃!x.P(x)∧Q(x))[λy.dog(y)] (1)

= λQ.∃!x.(λy.dog(y))[x]∧Q(x) (2)

= λQ.∃!x.dog(x)∧Q(x) (3)

I did something important in line 1: before I substituted λx.dog(x) in for P, I re-named
the variable x in the substituted expression and called it y. That’s because there was
already an x in the outer expression. In this case, those x’s turn out to refer to the
same thing, but that isn’t guaranteed to be the case. If I didn’t re-name the variable,
I might have ended up making two variables that are supposed to refer to different
things actually refer to the same thing. (This is basically a namespace issue, just like
what happens when you define a variable inside a function in Python with the same
name as one outside the function: implicitly, Python treats them as two different things.
Here we have to rename one of them explicitly to avoid clashes.)

• S: derived as NP.sem(VP.sem), which is

(λQ.∃!x.dog(x)∧Q(x))[λx.∃e.walking(e)∧walker(e,x)] (4)

= ∃!x.dog(x)∧ (λy.∃e.walking(e)∧walker(e,y))[x] (5)

= ∃!x.dog(x)∧∃e.walking(e)∧walker(e,x) (6)

Again, notice that I re-named the x in the “walk” part in the second line.

2



b) The problem is that the semantic attachment for VP says that the Vt takes the NP as its
argument. But all our NPs have meanings like λP.(. . .). If we apply the proposed simple
(base-form) MR for see to something like that, we substitute the complex NP MR for y and
end up with an invalid FOL expression. The solution is to type-raise the MRs for transitive
verbs, just as we saw type-raising for NPs in lecture. This allows the Vt to take its NP
argument and apply that NP to the base meaning of the Vt. For example, the MR for walks
Spot is derived as follows.

(λPλx.P(λy.∃e.walking(e)∧walker(e,x)∧walkee(e,y)))[λP.P(Spot)] (7)

= (λPλx.P(λy.∃e.walking(e)∧walker(e,x)∧walkee(e,y))[λQ.Q(Spot)]) (8)

= λx.(λQ.Q(Spot))[λy.∃e.walking(e)∧walker(e,x)∧walkee(e,y)] (9)

= λx.(λy.∃e.walking(e)∧walker(e,x)∧walkee(e,y))[Spot] (10)

= λx.∃e.walking(e)∧walker(e,x)∧walkee(e,Spot) (11)

c) We just showed how to compute the meaning of the VP in “Sam walks Spot”. We can
combine it with the subject NP using the NP.sem(VP.sem) attachment as follows:

(λP.P(Sam))[λx.∃e.walking(e)∧walker(e,x)∧walkee(e,Spot)] (12)

= (λx.∃e.walking(e)∧walker(e,x)∧walkee(e,Spot))[Sam] (13)

= ∃e.walking(e)∧walker(e,Sam)∧walkee(e,Spot) (14)

To compute the MR for “Sam walks” we have:

(λP.P(Sam))[λx.∃e.walking(e)∧walker(e,x)] (15)

= (λx.∃e.walking(e)∧walker(e,x))[Sam] (16)

= ∃e.walking(e)∧walker(e,Sam) (17)

So, according to the meaning representations, “Sam walks” is entailed by “Sam walks Spot”:
in every case where the latter is true, the former will also be true. However, in common
usage, this entailment does not hold. For example, I might walk a dog by standing with a
leash and letting the dog run around, or by riding a bicycle with the dog on a leash. This is
different from the pair “Sam sees Spot”/“Sam sees” because in this case, the second sentence
really is entailed by the first one.

The issue with “walk” is that the transitive form actually has a slightly different meaning
from the intransitive form. It means something like “make someone/something walk”: the
object of “walk” is the walker, not the subject. So we might consider changing the MR to
something like:

λPλx.P(λy.∃e.walking(e)∧walker(e,y)∧ instigator(e,x)) (18)

where y (which will be the object of the sentence) is now the walker instead of the walkee.

d) First, the analysis where PP attaches inside NP. I use subscripts so I can refer to the nodes
when there are multiple ones with the same phrasal category.

3



S

��
��

HH
HH

NP3

Sam

VP

�
��
�

H
HH

H

Vt

sees

NP2

��
��

HH
HH

Det2

a

Nom3

��
�

HH
H

Nom2

N2

dog

PP
��
�

HH
H

P

in

NP1
�� HH

Det1

the

Nom1

N1

park

The MRs derived at each node are as follows:

• park, N1, Nom1: λx.park(x)

• the, Det1: λP.λQ.∃!x.P(x)∧Q(x)

• NP1, as Det1.sem(Nom1.sem):

(λP.λQ.∃!x.P(x)∧Q(x))[λy.park(y)] = λQ.∃!x.(λy.park(y))[x]∧Q(x) (19)

= λQ.∃!x.park(x)∧Q(x) (20)

• in, P: λP.λQλx.P(λy.in(x,y))∧Q(x)

• PP (in the park), as P.sem(NP1.sem):

(λP.λQλx.P(λy.in(x,y))∧Q(x))[λQ.∃!x.park(x)∧Q(x)] (21)

= (λP.λQλx.P(λy.in(x,y))∧Q(x))[λR.∃!z.park(z)∧R(z)] (22)

= λQλx.(λR.∃!z.park(z)∧R(z))[λy.in(x,y)]∧Q(x) (23)

= λQλx.∃!z.park(z)∧ (λy.in(x,y))[z]∧Q(x) (24)

= λQλx.∃!z.park(z)∧ in(x,z)∧Q(x) (25)

• dog, N2, Nom2: λx.dog(x)

• Nom3 (dog in the park), as PP.sem(Nom2.sem):

(λQλx.∃!z.park(z)∧ in(x,z)∧Q(x))[λy.dog(y)] (26)

= λx.∃!z.park(z)∧ in(x,z)∧ (λy.dog(y))[x] (27)

= λx.∃!z.park(z)∧ in(x,z)∧dog(x) (28)

• a, Det2: λP.λQ.∃x.P(x)∧Q(x)

• NP2 (a dog in the park), as Det2.sem(Nom3.sem):

(λP.λQ.∃x.P(x)∧Q(x))[λx.∃!z.park(z)∧ in(x,z)∧dog(x)] (29)

= (λP.λQ.∃x.P(x)∧Q(x))[λy.∃!z.park(z)∧ in(y,z)∧dog(y)] (30)

= λQ.∃x.(λy.∃!z.park(z)∧ in(y,z)∧dog(y))[x]∧Q(x) (31)

= λQ.∃x.∃!z.park(z)∧ in(x,z)∧dog(x)∧Q(x) (32)

• sees, Vt: λPλx.P(λy.∃e.seeing(e)∧ seer(e,x)∧ seen(e,y))

4



• VP, as Vt.sem(NP2.sem):

(λPλx.P(λy.∃e.seeing(e)∧ seer(e,x)∧ seen(e,y)))[λQ.∃w.∃!z.park(z)∧ in(w,z)∧dog(w)∧Q(w)]

= . . .

= λx.∃w.∃!z.park(z)∧ in(w,z)∧dog(w)∧∃e.seeing(e)∧ seer(e,x)∧ seen(e,w)

• Sam, NP3: λP.P(Sam)

• And finally, if we apply NP3.sem(VP.sem), we can reduce the entire MR to:

∃w.∃!z.park(z)∧ in(w,z)∧dog(w)∧∃e.seeing(e)∧ seer(e,Sam)∧ seen(e,w)

The derivation is tedious, but it is nice to see that the resulting MR is what we’d expect: the
dog is in the park, and Sam sees the dog.

I will not go through the whole derivation for the second tree, where PP attaches to VP:

S

��
�
��

HH
H
HH

NP

Sam

VP

��
��
�

HH
HH

H

VP
��
�

HH
H

Vt

sees

NP
�� HH

Det

a

Nom

N

dog

PP
�� HH

P

in

NP
�� HH

Det

the

Nom

N

park

Suffice to say that it derives the following MR:

∃!z.park(z)∧ in(Sam,z)∧∃w.dog(w)∧∃e.seeing(e)∧ seer(e,Sam)∧ seen(e,w)

This is not too bad for the current sentence: Sam is in the park and sees the dog. However, it’s
only accidentally right: technically the seeing event is the thing that should be in the park,
not Sam. For “see” it’s hard to separate the two, but consider the syntactically identical
sentence “Sam cooks a potato in the oven”. In this case it’s clear that the cooking, not Sam,
is the thing “in the oven”.

So the correct meaning should really be:

∃!z.park(z)∧∃w.dog(w)∧∃e.seeing(e)∧ seer(e,Sam)∧ seen(e,w)∧ in(e,z)

5


