
ANLP Tutorial Exercise Set 4 (for tutorial groups in week 8)
WITH SOLUTIONS

v1.2
School of Informatics, University of Edinburgh
Sharon Goldwater

The solutions for this week’s tutorial include a lot of additional notes for those who are inter-
ested in more details. The information in these notes is not part of the core material required for
this course, but may be useful for other courses or to understand these models at a deeper level.

Exercise 1.
In lecture we introduced pointwise mutual information (PMI)1 a measure of statistical indepen-
dence which can tell use whether two words (or more generally, two statistical events) tend to
occur together or not. We’ll see it again in the Week 9 lab. The PMI between two events x and y is
defined as

PMI(x,y) = log2
P(x,y)

P(x)P(y)
(1)

Let’s consider two examples:

• x is “eat is the first word in a bigram” and y is “pizza is the second word in a bigram”.

• x is “happy occurs in a Tweet” and y is “pizza occurs in a Tweet”.

a) For each example, what does P(x,y) represent?

b) What do negative, zero, and positive PMI values represent in terms of the statistical inde-
pendence of x and y? (Hint: consider what must be true of the relationship between P(x,y)
and P(x)P(y) for the PMI to be negative, zero, or positive.) Give some example pairs of
words that you would expect to have negative or positive PMI (in either the bigram or Tweet
scenario).

c) Normally in NLP we do not know the true probabilities of x and y so we must estimate
them from data (as we will do in next week’s lab with a real dataset of Tweets). Assume
we use MLE to estimate probabilities. Write down an equation to compute PMI in terms of
counts rather than probabilities. Use N to represent the total number of observations (e.g.,
the total number of bigrams in the first example, or the total number of Tweets in the second
example).

d) Now, using your MLE version of PMI and the following toy dataset, compute PMI(x,y),
PMI(y,z), and PMI(x,z). You’ll use the answers to error-check your code in next week’s
lab.

N = 12
C(x) = 6 C(x,y) = 2
C(y) = 4 C(x,z) = 1
C(z) = 3 C(y,z) = 2

1In NLP this is sometimes also just called mutual information, although that term is used elsewhere for a related but
not identical concept. So I’m using PMI here to avoid confusion.

1



Solution 1.
a) The probability of the bigram eat pizza, or the probability of using the words happy and

pizza in the same Tweet.

b) • Negative: x and y are less likely to occur together than if independent. Ex: treaty and
pizza, two words which are very unlikely to be used together in the same conversa-
tion/text, much less in a single Tweet or bigram.

• Zero: x and y are independent.

• Positive: x and y are more likely to occur together than if independent. Ex: pepperoni
and pizza.

Note: We are talking about independence between events here. As a reminder (see also the
definitions in the Basic Probability Theory reading), two events x and y are independent
iff P(x,y) = P(x)P(y). Whereas for random variables X and Y to be independent, we re-
quire that P(X ,Y ) = P(X)P(Y ) for all possible values of X and Y . There is an analogous
distinction between PMI and (non-pointwise) Mutual Information (MI, or just I). Mutual
Information is defined between two RVs X and Y as the expected value of PMI across all
possible values of X and Y (here, all possible choices of word pairs):

I(X ,Y ) = ∑
x∈X

∑
y∈Y

P(x,y)log2
P(x,y)

P(x)P(y)
(2)

I(X ,Y ) is zero if X and Y are independent, and positive otherwise (with larger values indi-
cating less independence: knowing X tells you more about the value of Y and vice versa.)
Unlike PMI, MI cannot be negative. MI is used in information theory and other areas of
computer science, but not as much in NLP, where PMI is more useful.

c) PMI using counts is:

PMI(x,y) = log2
N ·C(x,y)
C(x)C(y)

(3)

which can be derived from the fact that the MLE estimates are P(x) = C(x)/N, P(y) =
C(y)/N, P(x,y) =C(x,y)/N.

d) PMI(x,y) = 0, PMI(x,z) = log2(2/3) = 1− log2 3, PMI(y,z) = 1.

Exercise 2.
Suppose we are using a logistic regression model for disambiguating three senses of the word
plant, where y represents the latent sense.

y sense
1 Noun: a member of the plant kingdom
2 Verb: to place in the ground
3 Noun: a factory

a) In lecture (and textbook) We saw the equation for P(y|~x) in a logistic regression model.
Write down a simplified expression for the log probability, logP(y|~x). Can you see why
logistic regression models are also called log-linear models?

b) Imagine we have already trained the model. The following table lists the features ~x we are
using and their weights ~w from training:

2



feat. # feature weight
1 doc contains(‘grow’) & y=1 2.0
2 doc contains(‘grow’) & y=2 1.8
3 doc contains(‘grow’) & y=3 0.3
4 doc contains(‘animal’) & y=1 2.0
5 doc contains(‘animal’) & y=2 0.5
6 doc contains(‘animal’) & y=3 -3.0
7 doc contains(‘industry’) & y=1 -0.1
8 doc contains(‘industry’) & y=2 1.1
9 doc contains(‘industry’) & y=3 2.7

where doc contains(‘grow’) means the document containing the target instance of plant
also contains the word grow.

Now we see a new document that contains the words industry, grow, and plant. Compute
∑i wi fi(~x,y) and P(y|~x) for each sense y. Which sense is the most probable?

c) Now suppose we add some more features to our model:

feat. # feature
10 POS(tgt)=NN & y=1
11 POS(tgt)=NN & y=2
12 POS(tgt)=NN & y=3
13 POS(tgt)=VB & y=1
14 POS(tgt)=VB & y=2
15 POS(tgt)=VB & y=3

where POS(tgt)=NN means the POS of the target word is NN.

We train the new model on a training set where all instances of plant have been annotated
with sense information and the correct POS tag. What will happen to the weights in this
model? (Hint: You might want to start by considering w14 in particular. If you can figure
that one out, then start to think about the others.)

d) Suppose we stop training the new model after a large number of training iterations. We then
use the model on a test set where POS tags have been added automatically (i.e., there may
be errors). What problem will this cause with our WSD system? What are some ways we
could change our model or training method to try to solve the problem?

Solution 2.
a) Using the dot product notation ~w ·~f (~x,y) to indicate ∑i wi fi(~x,y), we have

logP(y|~x) = log
1
Z

exp
(
~w ·~f (~x,y)

)
(4)

= log exp
(
~w ·~f (~x,y)

)
+ log

1
Z

(5)

= ~w ·~f (~x,y)− logZ (6)

The expression on the right-hand side is a linear combination of the feature values (that is,
each value is scaled linearly by its weight, and then we add them together; logZ is a con-
stant). So these models are called log-linear because the log probability is a linear function.

Note: I used a natural log (base e), so it cancels the exp (because loga ax = x). But if we used
a different base (say, 2), we could use the fact that logb a = logc a/ logc b. Then log2 P(y|~x)
is just Eq (6) divided by ln2: still a linear function.

3



b) • y = 1: Only f1 and f7 are active (have value 1), and all other features have value 0. So
∑i wi fi(~x,y) = 2.0−0.1 = 1.9.

• y = 2: Only f2 and f8 are active, so ∑i wi fi(~x,y) = 1.8+1.1 = 2.9.

• y = 3: Only f3 and f9 are active, so ∑i wi fi(~x,y) = 0.3+2.7 = 3.0.

Without even computing the probabilities, we can see that 3 is the most probable, followed
by class 2 and class 1.

To compute the actual probabilities, first take exp() of each value to get 6.68, 18.17, and
20.09. Then normalize by the sum of those values, giving 0.149, 0.404, and 0.447 as the
probabilities of class 1, 2, and 3, respectively.

You probably noticed that the set of features that is active for each class is always distinct:
that is the role of the ‘& y = 1’ part of the feature. This can be a bit confusing at first,
but remember these features are really feature functions: each feature is a function of the
observations~x and the class y. In training, we see both~x and y. In testing we see only~x, so
to compute the probability of a particular y, we use the feature that matches that~x and y in
the numerator. In the denominator we need to consider features matching all values of y.

Note: In some parts of machine learning, these models are presented slightly differently,
with the observations ~x themselves referred to as “features”. So, one feature might be
doc contains(’animal’). In this case, the same features are active regardless of the class,
but we assume that each class has its own distinct weight vector. So for this example, in-
stead of having a single weight vector with 9 values, we would have three different vectors
of length 3, one for each of the three classes. The two formulations are equivalent in the end,
but the notation is different. I used the version here for consistency with the textbook, and
because (as mentioned in class), it makes it possible to use MaxEnt (logistic regression) for
n-best re-ranking when the classes are not pre-defined.

c) In the training scenario I described, the tag VB is perfectly predictive: every time we observe
VB (that is, our observations ~x for a particular training example include POS(tgt)=VB), we
see the label y = 2 for that example. So (unless we apply regularization: see below), our
model wants to choose ~w such that P(y = 2|(POS(tgt) = VB) ∈~x) = 1. For simplicity, let’s
assume POS tags are the only observations we use in our model, so we only have features
f10− f15 (a similar argument holds even if other features are included). If we want P(y =
2|(POS(tgt) = VB) ∈~x) = 1, then we need to have

1 =
exp(~w ·~f (~x,y = 2))

exp(~w ·~f (~x,y = 1))+ exp(~w ·~f (~x,y = 2))+ exp(~w ·~f (~x,y = 3))
(7)

=
exp(w14 f14)

exp(w13 f13)+ exp(w14 f14)+ exp(w15 f15)
(8)

=
ew14

ew13 + ew14 + ew15
. (9)

where the second and third lines follow because for the observation VB, exactly one feature
is active and has value 1 for each possible class, and all others have value 0.

But now the problem is clear: there is no way to satisfy this equation with finite weights.
We would need the first and third terms in the denominator to be zero, but there is no finite
value n for which en = 0.

Instead, what will happen is (because the training procedure changes the weights iteratively),
the value for w14 will grow larger with every iteration, to make the probability closer and
closer to 1, and/or the values for w13 and w15 will grow more and more negative. But these
values will never converge!

4



As for w10 and w12, these are associated with the NN observation. Let’s say for the sake of
argument that 60% of the training examples tagged NN are class 1, and 40% are class 3. Then
w10 and w12 will end up with finite values such that the probability of class 1 given NN is
0.6 and the probability of class 3 is 0.4. However, we will run into another problem with
w11, because this time NN is perfectly predictive of not being in class 2. Running through a
similar argument to the one above shows that the model will try to make w11 =−∞.

d) The problem is that whenever there is an error in the automatic POS tag assigned to a test
case, our model will give it the wrong sense, regardless of how much evidence there is from
other observations. That’s because the model treats the POS tags as perfectly predictive and
doesn’t care about any other features.

To avoid this problem, and more generally to avoid the problem of infinite weights in the
model, we could do one of two things. First, we could train the model on the data set where
the POS tags are also automatic, so that the training examples would also contain some er-
rors and the tags would not be perfectly predictive. (Plus, hopefully the errors in the training
set would be similar to those in the testing set and the model would learn to generalize.)

However, this solution isn’t as general as we might like, because there might be other ob-
servations that are (accidentally) perfectly predictive of some class. This is especially true
if we have very many features, some of which are rare. A feature that only fires for one or
two training examples is likely to be perfectly predictive in the training data. This is basi-
cally a problem of overfitting. And, as mentioned briefly in the lecture, the way to solve that
is through regularization. Regularization adds an extra term to the objective function. This
term can take different forms, but all of them are designed so that infinite weights will no
longer be optimal under the regularized objective. So, adding a regularization term allows
the model to generalize better and avoid overfitting. Any standard package implementing
logistic regression models should have options to include one or more types of regulariza-
tion.

Note: In practice, logistic regression models should also include a bias term for each class.
This is a feature that only includes the class label, for example we’d add f16, f17, f18 to our
model above, which would fire whenever y = 1,2, or 3 (respectively). The purpose of these
bias terms is to help model the prior probabilities of each class. For example, we might find
that the prior probability of class 1 is much higher than classes 2 and 3. We can model this
by setting w16 appropriately. Then the other weights simply adjust the probability of class 1
up or down from this baseline.

It’s important that regularization should not be applied to the bias terms, since by definition
they are based on many examples and won’t overfit.

5


