
ANLP Tutorial Exercise Set 3 (for tutorial groups in week 6)
WITH SOLUTIONS

v1.4
School of Informatics, University of Edinburgh
Henry Thompson, Sharon Goldwater

This week’s tutorial exercises focus on syntax, (English) grammar, and parsing, using both context-
free grammar and dependencies. After working through the exercises and discussing some addi-
tional issues in your tutorial groups, you should be able to:

• Provide examples showing how syntactic structure reflects the semantics of a sentence, and
in particular, semantic ambiguity. You should also be able to explain and illustrate how
constituency parses and dependency parses differ with respect to this issue.

• Provide the syntactic parse for simple sentences using either Universal Dependencies or
context-free grammar rules.

• Hand-simulate the CKY parsing algorithm and transition-based dependency parsing, and by
doing so, better understand some of the computational issues involved.

1 CFGs and attachment ambiguity

When constructing a grammar and parsing with it, one important goal is to accurately reflect
the meaning of sentences in the structure of the trees the grammar assigns to them. Assuming a
compositional semantics, this means we would expect attachment ambiguity in the grammar to
reflect alternative interpretations. The following two exercises aim to hone your intuitions about
the syntax-semantics relationship.
Exercise 1.
In English, conjunctions often create attachment ambiguity, as in the sentence I like green
eggs and ham. The ambiguity inside the noun phrase here could be captured by the following
two context-free grammar rules, where Nom is a nominal (noun-like) category:

Nom→ Adj Nom
Nom→ Nom Conj Nom

a) Write down two paraphrases of I like green eggs and ham, where each paraphrase un-
ambiguously expresses one of the meanings.

b) Draw two parse trees for just the Nom part of the sentence, illustrating the ambiguity. You’ll
also need to use a rule Nom→ N. Which tree goes with which paraphrase?

Solution 1.
a) I like ham and green eggs or I like green eggs and green ham.

b) Respectively:
Nom

�
��

�
��

H
HH

H
HH

Nom
�� HH

Adj

green

Nom

N

eggs

Conj

and

Nom

N

ham

Nom

��
��

HH
HH

Adj

green

Nom

��
��

HH
HH

Nom

N

eggs

Conj

and

Nom

N

ham

1

(A) VP

��
�

HH
H

VP
��HH

V NP

PP
�� HH

P NP
��HH

NP PP

(B) VP

��
�

HH
H

VP
�� HH

V NP
��HH

NP PP

PP

(C) VP
��
�

HH
H

V NP
�� HH

NP PP
�� HH

P NP
��HH

NP PP

(D) VP

��
�

HH
H

V NP
�� HH

NP
��HH

NP PP

PP

(E) VP
��
�

HH
H

VP
�� HH

VP
��HH

V NP

PP

PP

Figure 1: Trees for exercise 2

Exercise 2.
Another common source of attachment ambiguity in English is from prepositional phrases. The
relevant grammar rules include:

VP→ V NP
VP→ VP PP
NP→ NP PP
PP→ P NP

Here are five verb phrases:
(1) watched the comet from the roof with my telescope
(2) watched the comet from the park across the street
(3) watched a video by the BBC about the comet
(4) watched a video about the expedition to the comet
(5) watched a video about the comet on my mobile

Figure 1 shows five partial trees. Match the phrases to the trees which best capture their meanings.
You may find it helpful to ask yourself questions such as “where did this event happen?”, “how
was it done?”, “what was watched?”. You may also want to try out (in pencil!) different ways of
writing in phrases under the leaves of the various trees.

Solution 2.
1E; 2A; 3D; 4C; 5B

2 CKY parsing

Exercise 3.
Assume we are using the following grammar:

2

S→ NP VP V→ swam | ran | flew
VP→ V NP VP→ swam | ran | flew
VP→ VP PP D→ the | a | an
NP→ D N N→ pilot | plane
NP→ NP PP NP→ Edinburgh | Glasgow
PP→ P NP P→ to

a) Draw a 7x7 chart for the sentence the pilot flew the plane to Glasgow and fill it
in using the CKY algorithm. Number the symbols you put in the matrix in the order they
would be computed, assuming the grammar is searched top-to-bottom.

b) How is the attachment ambiguity present in this sentence reflected in the chart at the end?

Solution 3.
a) Here is a picture of the chart. To avoid clutter I included the backpointers only for the final

three items added (the VPs and S). The backpointers show the (i,j) indices for the pair of
child cells.

1 2 3 4 5 6 7
the pilot flew the plane to Glasgow

-----+-------+---------+-----+-------+----+-------
| | | | | |

0 1:D |9:NP |12:S | |15:S | |18:S [NP(0,2),VP(2,7)]
-----+-------+---------+-----+-------+----+-------

1 |2:N | | | | |
-----+-------+---------+-----+-------+----+-------

| | | | | |17:VP [VP(2,5),PP(5,7)]
2 | |3:V 4:VP | |13:VP | |16:VP [V(2,3),NP(3,7)]

-----+-------+---------+-----+-------+----+-------
3 | | |5:D |10:NP | |14:NP

-----+-------+---------+-----+-------+----+-------
4 | | | |6:N | |

-----+-------+---------+-----+-------+----+-------
5 | | | | |7:P |11:PP

-----+-------+---------+-----+-------+----+-------
6 | | | | | |8:NP

-----+-------+---------+-----+-------+----+-------

b) The ambiguity isn’t represented explicitly at the top node. However if we follow the back-
pointer, we see that there are two VPs in (2,7), which indicates two distinct subtrees (with
different backpointers).

It’s actually important that we do not add a second S at the top: if we carried the ambiguity
upward in this fashion, we could end up storing an exponential number of categories in each
cell—and this is exactly what we are trying to avoid.

Notice that the backpointers contain both the label and location of each child. For this ex-
ample, the location alone would be enough because (for example) there is only one way
to build a VP from the items in (2,5) and (5,7). But in principle there might be more than
one rule that can make a VP from items in those cells, and in order to be able to efficiently
reconstruct all of them at the end, we need to know the child’s label as well as its location.
What we end up with at the end of parsing is called a “packed parse forest.”

3 Dependency syntax and parsing

3

Exercise 4.
a) Draw dependency parses for verb phrases (2) and (3) from exercise 2, using UD labels

for the relations as illustrated in JM3. You shouldn’t need to know any more labels than:
nsubj, dobj, iobj, det, case, nmod, amod. You should be able to figure out most
of the labels by looking at examples from the textbook. For prepositional phrases, use the
nmod relation, as in these examples:1

the man in the mirror

root

det

nmod

det

case

he looked in the mirror

root

nsubj

nmod

det

case

Note that by convention, all dependency parses have a root, whether or not it is the head of
a full sentence.

b) Now try to draw a dependency parse for the sentence I like green eggs and ham. You
will need to use the cc and conj labels (see examples in JM3, Fig 15.3). Do you run across
any problems? Is it clear what the dependency structure should be? Is the ambiguity in this
sentence represented in the dependency structure (or multiple structures), and if so how?

Solution 4.
a) The two trees are:

watched the comet from the park across the street

root

dobj

det

nmod

det

case

nmod

det

case

watched a video by the BBC about the comet

root

dobj

det

nmod

det

case

nmod

det

case

b) The correct tree according to UD v1 guidelines (and following the textbook) is:

I like green eggs and ham

root

nsubj amod

dobj conj

cc

1The textbook and this tutorial more or less follow the UD v1 guidelines; UD guidelines have now been updated for
v2, so if you look online you may find discrepancies.

4

There are several points worth noticing/discussing, including the following:

• Conjunction is inherently a symmetric relationship, but dependency grammar requires
asymmetric relations. So it isn’t a natural fit, and requires choosing one of the two con-
juncts arbitrarily as the head for both the conj and cc relations. In fact UD v1 and v2 differ
on what is the head of the cc relation!

• There is only a single dependency parse for this sentence, even though there are two different
meanings. So in this case (unlike constituency structure) the dependency structure does not
reflect the semantic ambiguity.

• You might have considered (or discussed in your group) whether there are alternative guide-
lines for parsing conjunctions that would reflect the ambiguity, or have a more symmetric
relationship. For example, would it be reasonable to make and the head of the conjoined
phrase, and would this solve any of the problems? What might a dependency-like structure
look like that better captures the meaning where green modifies both eggs and ham? (It
has two arcs pointing to green, which isn’t a valid dependency tree. But some people have
proposed that we should really be using dependency graphs, rather than trees. These would
permit this kind of structure, but are much more difficult to deal with computationally, e.g.
to design efficient parsing algorithms.)

By the way, Green Eggs and Ham happens to be the title of a popular American children’s book
by Dr. Seuss. But that doesn’t matter for understanding the issues in this question! I chose the
phrase specifically because it’s not obvious what the “correct” interpretation of the ambiguous
conjunction is (if there even is one). The main takeaway from this exercise is for you to understand
some of the weaknesses of dependency structure.

Exercise 5.
Consider the following dependency-annotated sentence. (For simplicity, we leave out the relation
labels in this exercise).

the cat chased a dog

By hand-simulating the algorithm for arc-standard transition-based parsing, show that there
is more than one sequence of transitions that can lead to the correct parse of this sentence. How
does this fact motivate the need for the procedure described in JM3 section 15.4.1 (generating the
training oracle)? What is the sequence produced by the training oracle?

Solution 5.
Here are two possible sequences (you might find others). The first is the training oracle sequence,
which chooses LEFTARC as soon as possible in all cases.

5

Step Stack Word list Action Relation added
0 [root] [the, cat, chased, a, dog] SHIFT

1 [root, the] [cat, chased, a, dog] SHIFT

2 [root, the, cat] [chased, a, dog] LEFTARC (the← cat)
3 [root, cat] [chased, a, dog] SHIFT

4 [root, cat, chased] [a, dog] LEFTARC (cat← chased)
5 [root, chased] [a, dog] SHIFT

6 [root, chased, a] [dog] SHIFT

7 [root, chased, a, dog] [] LEFTARC (a← dog)
8 [root, chased, dog] [] RIGHTARC (chased→ dog)
9 [root, chased] [] RIGHTARC (root→ chased)
10 [root] [] DONE

Step Stack Word list Action Relation added
0 [root] [the, cat, chased, a, dog] SHIFT

1 [root, the] [cat, chased, a, dog] SHIFT

2 [root, the, cat] [chased, a, dog] LEFTARC (the← cat)
3 [root, cat] [chased, a, dog] SHIFT

4 [root, cat, chased] [a, dog] SHIFT

5 [root, cat, chased, a] [dog] SHIFT

6 [root, cat, chased, a, dog] [] LEFTARC (a← dog)
7 [root, cat, chased, dog] [] RIGHTARC (chased→ dog)
8 [root, cat, chased] [] LEFTARC (cat← chased)
9 [root, chased] [] RIGHTARC (root→ chased)
10 [root] [] DONE

The training oracle is needed in order to define a set of actions that will lead to a correct parse, and
are also as consistent as possible. In other words, when we train the classifier to decide an action,
we want the training data (sequences of configurations from the training oracle) to be as consistent
as possible about what action is taken given a particular configuration or partial configuration,
because consistent patterns are easier to learn than random ones.

6

