Minimum edit distance: worked example

Sharon Goldwater

15 September 2017

Why compute minimum edit distance?

Sometimes we want to know how "similar" two strings are.

• Could indicate morphological relationships:

walk - walks, sleep - slept

• Or possible spelling errors (and corrections):

definition - defintion, separate - seperate

• Also used in other fields, e.g., bioinformatics (gene sequences):

ACCGTA - ACCGATA

Sharon Goldwater

MED example

1

MED is (one) way to measure similarity

MED example

formatics

• How many changes needed to go from string $s_1 \rightarrow s_2$?

- To solve the problem, we need to find the best **alignment** between the words.
- Could be several equally good alignments.

Alignments and edit distance

These two problems reduce to one: find the **optimal character alignment** between two words (the one with the fewest character changes: the **minimum edit distance** or MED).

• Example: if all changes count equally, MED(stall, table) is 3:

Sharon Goldwater

2

15 September 2017

Alignments and edit distance

These two problems reduce to one: find the **optimal character alignment** between two words (the one with the fewest character changes: the **minimum edit distance** or MED).

• Example: if all changes count equally, MED(stall, table) is 3:

	S	Т	А	L	L						
		Т	А	L	L		dele	etio	1		
		Т	А	В	L		sub	stit	utio	n	
		Т	А	В	L	Е	inse	ertic	n		
• Written as an	alig	gnm	ent:		S	Т	А	L	L	-	
					d			s		i	
					-	Т	А	В	L	Е	

Sharon Goldwater

MED example

How to find an optimal alignment

Brute force: Consider all possibilities, score each one, pick best. How many possibilities must we consider?

• First character could align to any of:

- - - - T A B L E -

- Next character can align anywhere to its right
- And so on... the number of alignments grows exponentially with the length of the sequences.

Maybe not such a good method...

More alignments

 \bullet There may be multiple best alignments. In this case, two:

S	Т	А	L	L	-	S	Т	А	-	L	L
d			S		i	d			i		S
-	Т	А	В	L	Е	-	Т	А	В	L	Е

• And **lots** of non-optimal alignments, such as:

S	Т	А	-	L	-	L	S	Т	А	L	-	L	-
s	d		i		i	d	d	d	S	S	i		i
Т	-	А	В	L	Е	-	-	-	Т	А	В	L	Е

Sharon Goldwater

MED example

5

A better idea

Instead we will use a **dynamic programming** algorithm.

- Other DP (or **memoization**) algorithms we'll see later: Viterbi, CKY.
- Used to solve problems where brute force ends up **recomputing** the same information many times.
- Instead, we
 - Compute the solution to each subproblem once,
 - Store (memoize) the solution, and
 - Build up solutions to larger computations by combining the pre-computed parts.
- Strings of length n and m require O(mn) time and O(mn) space.

6

Δ

Intuition

- Minimum distance D(stall, table) must be the minimum of:
- D(stall, tabl) + cost(ins)
- D(stal, table) + cost(del)
- D(stal, tabl) + cost(sub)
- Similarly for the smaller subproblems
- So proceed as follows:
- solve smallest subproblems first
- store solutions in a table (chart)
- use these to solve and store larger subproblems until we get the full solution

Sharon	Goldwater

MED example

A note about costs

- Our first example had cost(ins) = cost(del) = cost(sub) = 1.
- But we can choose whatever costs we want. They can even depend on the particular characters involved.
 - Ex: choose cost(sub(c,c')) to be P(c'|c), the probability of someone accidentally typing c' when they meant to type c.
 - Then we end up computing the most probable sequence of typos that would change one word to the other.
- In the following example, we'll assume cost(ins) = cost(del)= 1 and cost(sub) = 2.

Sharon	Goldwater

MED example

9

Chart: starting point

		Т	А	В	\mathbf{L}	E
	0					
S						
Т						
A						
L						
L						

- Chart[i, j] stores two things:
- $D(\mathsf{stall}[0..i],\mathsf{table}[0..j])$: the MED of substrings of length $i,\,j$
- Backpointer(s) showing which sub-alignment(s) was/were extended to create this one.

Filling first cell

		Т	A	В	\mathbf{L}	E
	0					
S	↑1					
Т						
Α						
L						
\mathbf{L}						

- Moving down in chart: means we had a **deletion** (of S).
- \bullet That is, we've aligned (S) with (-).
- Add cost of deletion (1) and backpointer.

8

Rest of first column

		Т	A	В	\mathbf{L}	Е
	0					
S	↑1					
Т	$\uparrow 2$					
A						
L						
L						

- Each move down first column means another deletion.
 - D(ST, -) = D(S, -) + cost(del)

		Т	A	В	\mathbf{L}	E
	0					
S	<u>†1</u>					
Т	$\uparrow 2$					
Α	$\uparrow 3$					
L	↑4					
L	$\uparrow 5$					

• Each move down first column means another deletion.

$$\begin{array}{l} - \ D(ST, \, \text{-}) = D(S, \, \text{-}) \, + \, cost(del) \\ - \ D(STA, \, \text{-}) = D(ST, \, \text{-}) \, + \, cost(del) \\ - \, etc \end{array}$$

Sharon Goldwater

MED example

12

MED example

13

Start of second column: insertion

		Т	A	В	L	E
	0	$\leftarrow 1$				
S	<u>†1</u>					
Т	$\uparrow 2$					
A	$\uparrow 3$					
L	$\uparrow 4$					
L	$\uparrow 5$					

- Moving right in chart (from [0,0]): means we had an **insertion**.
- That is, we've aligned (-) with (T).
- Add cost of insertion (1) and backpointer.

Substitution

		Т	A	В	L	E
	0	$\leftarrow 1$				
S	↑1	$\swarrow 2$				
Т	$\uparrow 2$					
Α	$\uparrow 3$					
L	$\uparrow 4$					
L	$\uparrow 5$					

- Moving down and right: either a substitution or identity.
- \bullet Here, a substitution: we aligned (S) to (T), so cost is 2.
- For identity (align letter to itself), cost is 0.

Sharon Goldwater

Multiple paths

Multiple paths

		Т	А	В	L	E
	0	$\leftarrow 1$				
S	<u>†1</u>	<u>⊼</u> †2				
Т	$\uparrow 2$					
A	$\uparrow 3$					
L	↑4					
L	$\uparrow 5$					

- However, we also need to consider other ways to get to this cell:
- Move **down** from [0,1]: deletion of S, total cost is D(-, T) + cost(del) = 2.
- Same cost, but add a new backpointer.

Sharon Goldwater

MED example

16

Single best path

		Т	Α	В	L	E
	0	$\leftarrow 1$				
S	↑1	$\leftarrow \nwarrow \uparrow 2$				
Т	$\uparrow 2$	1				
Α	$\uparrow 3$					
L	$\uparrow 4$					
L	$\uparrow 5$					

- Now compute D(ST, T). Take the min of three possibilities:
- D(ST, -) + cost(ins) = 2 + 1 = 3.- D(S, T) + cost(del) = 2 + 1 = 3.
- D(S, -) + cost(ident) = 1 + 0 = 1.

		Т	A	В	\mathbf{L}	E
	0	$\leftarrow 1$				
S	↑1	$\leftarrow \nwarrow \uparrow 2$				
Т	$\uparrow 2$					
Α	$\uparrow 3$					
L	↑4					
L	$\uparrow 5$					

- However, we also need to consider other ways to get to this cell:
- Move **right** from [1,0]: insertion of T, total cost is D(S, -) + cost(ins) = 2.
- Same cost, but add a new backpointer.

Goldwater

MED example

17

Final completed chart

		Т	А	В	\mathbf{L}	E
	0	$\leftarrow 1$	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$
S	<u>†</u> 1	$\leftarrow \nwarrow \uparrow 2$	$\leftarrow \nwarrow \uparrow 3$	$\leftarrow \nwarrow \uparrow 4$	$\leftarrow \nwarrow \uparrow 5$	$\leftarrow \checkmark \uparrow 6$
Т	$\uparrow 2$	1	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$
Α	$\uparrow 3$	$\uparrow 2$	1	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$
L	$\uparrow 4$	$\uparrow 3$	$\uparrow 2$	$\leftarrow \nwarrow 3$	$\swarrow 2$	$\leftarrow 3$
L	$\uparrow 5$	$\uparrow 4$	$\uparrow 3$	$\leftarrow \nwarrow \uparrow 4$	<u>√</u> †3	$\leftarrow \checkmark \uparrow 4$

 \bullet Follow the backpointers to find the best alignment(s). This path, for example, corresponds to: S T A - L L -

d | | i d | i - T A B - L E

Exercises

- Choose a different path through the backpointers and reconstruct its alignment.
- How many different optimal alignments are there?
- Redo the chart with all costs = 1 (Levenshtein distance), or some other set of costs, or using a different word pair.

Sharon Goldwater

MED example

20