
Accelerated Natural Language
Processing 2018

Lecture 13: (Features), Parsing as
search and as dynamic

programming
Henry S. Thompson

Drawing on slides by Mark Steedman via Philipp Koehn
15 October 2018

1. Features [Material in slides 1--8 are not
examinable]
The name feature has been around in Linguistics for a long time

The basic idea is to capture generalisations by decomposing monolithic categories into
collections of simpler features

Originally developed for phonology, where we might have e.g.

/i/ +high, +front
/e/ -high, +front
/o/ -high, -front
/u/ +high, -front

Where we can now 'explain' why /i/ and /u/ behave similarly in certain cases, while /i/ and /e/ go
together in other cases.

Those are all binary features

• sometimes also used at the level of syntax:

• +/- singular; +/- finite

2. Features, cont'd
But more often we find features whose values are some enumerated type

person: {1st,2nd,3rd}; number: {sg, pl}; ntype: {count, mass}

We'll follow J&M and write collections of features like this:

[person
number

3rd
pl]

It will be convenient to generalise and allow features to take feature bundles as values:

[ntype

agreement

count

[person
number

3rd
pl]]

3. Features in use
We can now add feature bundles to categories in our grammars

In practice we allow some further notational conveniences:

• Not all features need be specified (e.g. the number feature for 'sheep')
• In rules, we allow the values of features to be variables
• And we can add constraints in terms of those variables to rules

For example

N[ntype

agreement

count

[person
number

3rd
pl]] → men | dogs | cats|...

NP[agreement x] → D[agreement y] N[agreement z] x = y = z

4. Features: more than notational
convenience?
At one level, features are just a convenience

The allow us to write lexicon entries and rules more transparently

But they also "capture generalisations"

If we write a pair of rules using some (in principle opaque) complex category labels, they are
not obviously related in any way:

S → NPsgVPsg S → NPplVPpl

It appears as if we have to justify each of these independently

• or that we might have had one without the other

• or had S → NPsgVPpl just as well

Whereas when we write

S → NP VP [<NP agreement> = <VP agreement>]

we are making a stronger claim, even though 'behind the scenes' this single line corresponds to
a collection of simple atomic-category rules

5. Infinity again: categories
Once you move to feature bundles as the values of features

• You can in principle have an infinite number of categories
◦ By having one or more recursive features

• And, as with infinite numbers of rules, that actually changes your position on the
Chomsky hierarchy

One strand of modern grammatical theory

• From GPSG to HPSG to so-called sign-based grammatical theories

Puts essentially all the expressive power of the grammar into feature structures

6. Unification
When we write '=' between two feature paths or feature variables, we mean more than an
equality test

Consider the noun phrase "a sheep", and the following rules

N[ntype

agreement

count

[person 3rd]]→sheep

D[agreement [person

number

3rd

sg]]→a

NP[agreement x] → D[agreement y] N[agreement z] x = y = z

The resulting parse tree reveals that we have not only tested for compatibility between the
various feature structures, we've actually merged them:

where by the ① we mean that all three agreement values are the the same feature structure

7. Unification, cont'd
The implications of unification run deep

The three occurrences of ① don't just appear the same

• They are the same
• That is, a single structure, shared 3 times
• So any change to one in the future will be a change to all

• As would be the case with e.g. "the sheep runs" or "the sheep run"

J&M give a detailed introduction to unification, which is what this is called, in section 15.2
(J&M 2nd ed.), and a formal definition in section 15.4.

The directed acyclic graph (DAG) way of drawing feature structures used in J&M 15.4 makes
clearer when necessary structure identity is the case, as opposed to contingent value equality

8. Parsers
A parser is an algorithm that computes a structure for an input string given a grammar.

All parsers have two fundamental properties:

Directionality
The sequence in which the structures are constructed

• Almost always top-down or bottom-up

Search strategy
The order in which the search space of possible analyses is explored

• Usually depth-first, breadth-first or best-first

9. Recursive Descent Parsing
A recursive descent parser treats a grammar as a specification of how to break down a top-
level goal into subgoals

This means that it works very similarly to a particular blind approach to constructing a rewriting
interpretation derivation:

Directionality
Top-down:

• starts from the start symbol of the grammar
• works down to the terminals

Search strategy
Depth-first:

• expands the left-most unsatisfied non-terminal
• until it gets to a terminal

◦ which either matches the next item in the input
◦ or it doesn't

10. Recursive Descent Parsing: preliminaries
We're trying to build a parse tree, given

• a grammar
• an input, i.e. a sequence of terminal symbols

As for any other depth-first search, we may have to backtrack

• So we must keep track of backtrack points
• And whenever we make a choice among several rules to try, we add a backtrack point

consisting of
◦ a partial tree
◦ the remaining as-yet-unexplored rules
◦ and the as-yet-unconsumed items of input

Note that, to make the search go depth-first

• We'll use a stack to keep track
• That is, we'll operate last in, first out (LIFO)

Finally, we'll need a notion of where the focus of attention is in the tree we're building

• We'll call this the subgoal

12. Recursive Descent Parsing: Algorithm

11. Recursive Descent Parsing: Algorithm
sketch
We start with

• a tree consisting of an 'S' node
◦ with no children
◦ This node is currently the subgoal

• An empty stack
• An input sequence

Repeatedly

1. If the subgoal is a non-terminal

e. Go back to (1)
2. Otherwise (the subgoal is a terminal)

a. If the input is empty, Backtrack
b. If the subgoal matches the first item of input

i. Consume the first item of the input
ii. Advance the subgoal
iii. Go back to (1)

c. Otherwise (they don't match), Backtrack

a. Choose a rule from the set of rules in the grammar whose left-hand sides
match the subgoal
For example, the very first time around the loop, we might choose
S → NP VP

b. add children to the subgoal node corresponding to the symbols in the right-
hand side of the chosen rule, in order
In our example, that's two children, NP and VP

d. Make the first of these the new subgoal

a.
b. This is the other thing which makes this a depth-first search

sketch, concluded
The three imperative actions in the preceding algorithm are defined as follows:

Choose
Pick one member from the set of rules

1. If the set has only one member, you're done
2. Otherwise, push a new backtrack point onto the stack

◦ With the unchosen rules, the current tree and subgoal and the current
(unconsumed) input sequence

Advance
Change the subgoal, as follows:

1. If the current subgoal has a sibling to its right, pick that
2. Failing which, if the current subgoal is not the root, set the subgoal to the current

subgoal's parent, and go back to (1)
3. Failing which, if the input is empty, we win

◦ The current subgoal is the 'S' at the root, and it is the top node of a
complete parse tree for the original input

4. Otherwise, Backtrack

Backtrack
Try to, as it were, change your mind. That is:

1. Unless the stack is empty, pop the top backtrack point off the backtrack stack and
a. Set the tree, subgoal and input from it
b. Choose a rule from its set of rules
c. Go back to step (1b) of the algorithm

2. Otherwise (the stack is empty)
◦ We lose!
◦ There is no parse for the input with the grammar

We'll see the operation of this algorithm in detail in this week's lab

13. Search Strategies
Schematic view of the top-down search space:

In depth-first search the parser

• explores one branch of the search space at a time
• For example, using a stack (last-in, first-out) of incomplete trees to try to expand

• If a branch of the space is a dead-end, it needs to backtrack

In breadth-first search the parser

• explores all possible branches in parallel
• For example, using a queue (first-in, first out) of incomplete trees to try to expand

The bottom-up search space works, as the name implies, from the leaves upwards

• Trying to build and combine small trees into larger ones
• The parser we look at in detail in the next lectures works that way

14. Shift-Reduce Parsing
Search strategy does not imply a particular directionality in which structures are built.

Recursive descent parsing searches depth-first and builds top-down

Although Shift-reduce parsing also searches depth-first, in contrast it builds structures
bottom-up.

It does this by repeatedly

1. shifting terminal symbols from the input string onto a stack
2. reducing some elements of the stack to the LHS side of a rule when they match its

RHS

As described, this is just a recogniser

• You win if you end up with a single 'S' on the stack and no more input

Actual parsing requires more bookkeeping

Given certain constraints, it is possible to pre-compute auxiliary information about the
grammar and exploit it during parsing so that no backtracking is required.

Modern computer languages are often parsed this way

• But grammars for natural languages don't (usually) satisfy the relevant constraints

15. Global and Local Ambiguity
A string can have more than one structural analysis (called global ambiguity) for one or both
of two reasons:

• Grammatical rules allow for different attachment options;
• Lexical rules that allow a word to be in more than one word class.

Within a single analysis, some sub-strings can be analysed in more than one way

• even if not all these sub-string analyses 'survive'
• That is, if they are not compatible with any complete analysis of the entire string
• This is called local ambiguity

Local ambiguity is very common in natural languages as described by formal grammars

All depth-first parsing is inherently serial, and serial parsers can be massively inefficient when
faced with local ambiguity.

16. Complexity
Depth-first parsing strategies demonstrate other problems with "parsing as search":

1. Structural ambiguity in the grammar and lexical ambiguity in the words (that is,
words occurring under more than one part of speech) may lead the parser down a
wrong path

2. So the same sub-tree may be built several times
◦ whenever a path fails, the parser abandons any subtrees computed since the

last backtrack point, backtracks and starts again

The complexity of this blind backtracking is exponential in the worst case because of
repeated re-analysis of the same sub-string.

• We'll experience this first-hand in this week's lab

Chart parsing is the name given to a family of solutions to this problem

17. Dynamic Programming
It seems like we should be able to avoid the kind of repeated reparsing a simple recursive
descent parser must often do

A CFG parser, that is, a context-free parser, should be able to avoid re-analyzing sub-strings

• because the analysis of any sub-string is independent of the rest of the parse

The parser's exploration of its search space can exploit this independence

• if the parser uses dynamic programming.

Dynamic programming is the basis for all chart parsing algorithms.

18. Parsing as dynamic programming
Given a problem, dynamic programming systematically fills a table of solutions to
sub-problems

• A process sometimes called memoisation

Once solutions to all sub-problems have been accumulated

• DP solves the overall problem by composing them

For parsing, sub-problems are analyses of sub-strings

• which can be memoised
• in a chart
• also know as a well-formed substring table, WFST

Each entry in the chart or WFST corresponds to a complete constituent (sub-tree), indexed by
the start and end of the sub-string that it covers

• Active chart parsing goes further, and uses the chart for partial results as well

19. Depicting a WFST/Chart
A well-formed substring table (aka chart) can be depicted as either a matrix or a graph

• Both contain the same information

When a WFST (aka chart) is depicted as a matrix:

• Rows and columns of the matrix correspond to the start and end positions of a span of
items from the input

◦ That is, starting right before the first word, ending right after the final one
• A cell in the matrix corresponds to the sub-string that starts at the row index and ends

at the column index
• A cell can contain

◦ information about the type of constituent (or constituents) that span(s) the
substring

◦ pointers to its sub-constituents
◦ (In the case of active chart parsers, predictions about what constituents

might follow the substring)

20. Depicting a WFST as a matrix
Here's a sample matrix, part-way through a parse

0 See 1 with 2 a 3 telescope 4 in 5 hand 6

We can read this as saying:

• There is a PP from 1 to 4
◦ Because there is a Prep from 1 to 2
◦ and an NP from 2 to 4

21. Depicting a WFST as a graph
A sample graph, for the same situation mid-parse

• Here, nodes (or vertices) represent positions in the text string, starting before the
first word, ending after the final word.

• arcs (or edges) connect vertices at the start and the end of a span to represent a
particular substring

◦ Edges can be labelled with the same information as in a cell in the matrix
representation

22. Algorithms for chart parsing
Important examples of parser types which use a WFST include:

• The CKY algorithm, which memoises only complete constituents
• Three algorithm families that involve memoisation of both complete and incomplete

constituents
◦ Incomplete constituents can be understood as predictions

▪ bottom-up chart parsers
▪ May include top-down filtering

▪ top-down chart parsers
▪ May include bottom-up filtering

▪ the Earley algorithm

23. CKY Algorithm
CKY (Cocke, Kasami, Younger) is an algorithm for recognising constituents and recording them
in the chart (WFST).

CKY was originally defined for Chomsky Normal Form

A → B C

A → a

• (Much more recently, this restriction has been lifted in a version by Lang and Leiss)
• The example below follows them in part, also allowing unary rules of the form A → B

We can enter constituent A in cell (i,j) iff either

• there is a rule A → b and
◦ b is found in cell (i,j)

• or if there is a rule A → B C and there is at least one k between i and j such that
◦ B is found in cell (i,k)
◦ C is found in cell (k,j)

24. CKY parsing, cont'd
Proceeding systematically bottom-up, CKY guarantees that the parser only looks for rules which
might yield a constituent from i to j after it has found all the constituents that might
contribute to it, that is

• That are shorter than it is
• That end at or to the left of j
• This guarantees that every possible constituent will be found
•

Note that this process manifests the fundamental weakness of blind bottom-up parsing:

• Large numbers of constituents will be found which do not participate in the ultimately
spanning 'correct' analyses.

25. Visualising the chart: YACFG
Grammatical rulesLexical rules
S → NP VP Det → a | the (determiner)
NP → Det Nom N → fish | frogs | soup (noun)
NP → Nom Prep → in | for (preposition)
Nom → N SRel TV → saw | ate (transitive verb)
Nom → N IV → fish | swim (intransitive verb)
VP → TV NP Relpro → that (relative pronoun)
VP → IV PP
VP → IV
PP → Prep NP
SRel → Relpro VP

Nom: nominal (the part of the NP after the determiner, if any)

SRel: subject relative clause, as in the frogs that ate fish.

Non-terminals occuring (only) on the LHS of lexical rules are sometimes called pre-terminals

• In the above grammar, that's Det, N, Prep, TV, IV, Relpro

Sometimes instead of sequences of words

• we just parse sequences of pre-terminals
• At least during grammar development

