AI2 Module 3 Tutorial 2

Jacques Fleuriot

School of Informatics (Amended David Talbot January 15, 2005.)

Part 1

In this tutorial you will simulate the decision tree learning algorithm. The Boolean concept is:

Shall I wait at a restaurant?

and the attributes in this learning problem are:

Alternate: whether there is another restaurant nearby

Bar: is there a bar area to wait in?

Fri/Sat: true on Fridays and Saturdays

Hungry: are we hungry?

Patrons: how many people are in the restaurant (values *some*, *none*, *full*)

Price: the price range

Raining: whether it is raining outside

Reservation: whether we made a reservation

Type: the type of restaurant (French, Thai, Italian, Burger)

WaitEstimate: the wait time estimated

The examples are given in the following table:

Example	Attributes										Goal
	Alt	Bar	Fri	Hungry	Patrons	Price	Rain	Reserve	Type	Estimate	
X1	Yes	No	No	No	Some	\$\$\$	No	Yes	French	0-30	yes
X2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
Х3	No	yes	No	No	Some	\$	No	No	Burger	0-10	yes
X4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	yes
X5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	> 60	No
X6	No	Yes	No	yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	> 60	No
X10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X11	No	No	No	No	None	\$	No	No	Thai	0-10	No
X12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

Continued on next page

For reference, the diagram below shows a somewhat complicated decision tree drawn by hand by someone. Hopefully, the decision tree that you will discover will be more compact.

Questions:

1. Simulate the operation of the algorithm for the first split. Compute the Gain() for attributes Patrons, Type, and Hungry. The equations are given on slides 2-33, 2-34. You may need the following values: $\log_2 3 = 1.585$, $\log_2 1.5 = 0.585$, I(X,0) = I(0,X) = 0 and I(X,X) = 1.

Assuming that other attributes are not better than the three just considered, which attribute should be chosen?

- Simulate the next splits by looking at the resulting partitions and evaluating intuitively which of the these is the most "skewed" one. Continue this until all examples are classified correctly.
- 3. Is the decision tree that you obtained reasonable? What could be the cause of unreasonable results?

Part 2

Question (from September 2001 Exams):

Consider the following situation:

A decision tree is to be used to classify instances as positive and negative. During the construction of the tree, a split on an attribute A with 3 values yields 3 subsets such that

- subset 1 has 2 positive examples and 8 negative examples
- subset 2 has 2 negative examples only
- subset 3 has 4 positive examples and 4 negative examples

Write an expression for $information\ gain$ after the split. You do not need to compute the value of the expression.