AI2 Module 3
Tutorial 1
Jacques Fleuriot School of Informatics
(Amended by David Talbot January 6, 2005.)

This tutorial will help you develop some intuition about information-based heuristics used
in machine learning. The questions are described in terms of encoding information. Their
relevance will become apparent when we discuss the decision tree learning algorithm. Many
other machine learning algorithms use similar heuristics.

We have a large collection of marbles of which we want to make an inventory. Each marble
has a number printed on it and has one of four colours: Red, Green, Blue, Yellow.

More concretely, we have 1024 marbles, and the numbers printed on marbles are 1,...,1024.
We also know that there are 512 Red marbles, 256 Green marbles, 128 Blue marbles, 128
Yellow marbles.

To make an inventory we can simply write down a table like the one 1 Red
on the right but we quickly realise that there is no need to write the 2 Yellow
numbers as they are implicit in the order, so instcad we write: 3 Red
(Red,Yellow,Red,. . .)

1. We ask a friend to save our inventory on a computer disk and she requests that we write
it down with bits: Os and 1s. To satisfy that we decide on an encoding;:
(Red=00,Green=01,Blue=10,Yellow=11)
and rewrite the inventory as: (00,11,00,...)
we also notice that the comma symbols are not needed since each letter takes exactly 2
bits so we rewrite again as (001100...)

Question: How many bits are required to encode the inventory (ignoring the space
required for the encoding table)?

2. Our friend complains that the inventory takes too much space and suggests that we
might improve things by giving a shorter code to Red (that appears many times) through
an increase in the length of the code for Yellow (that appears less time). She warns that
doing this will this will probably have an effect on the codes used for Blue and Green
as well.

Question: Try to devise such an encoding. How many bits are needed now ? can you
give up the separation between symbols as above ?

3. In general, given k kinds of marbles with n1,ng,...,ny of each respectively, one can try
to encode the information in an inventory. Let n = 3% n; denote the total number of
marbles and p; = 2 be the relative frequency. It is known (though not at all obvious)
that asymptotically any scheme must use at least an average of
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bits for a total of nI(ni,...,ng). I() is known as the entropy. There are known al-
gorithmic ways of computing optimal codes achieving average close to I() but that is
beyond the scope for our course.

Question: Compute I() for the inventory. How close is the improved scheme to it ?

. Our friend is still not pleased and wants to save more space. She has looked at our

inventory and found a regularity that may be used. In particular, the marbles numbered
1,...,600 include all Red marbles and 88 of the Yellow marbles. The idea now is that
we use two tables so as to encode ecach part separately. So we have part 1 with: 512 Red
and 88 Yellow marbles and part 2 with: 256 Green, 128 Blue, and 40 Yellow marbles.
Question: Compute the entropy for cach part and the total length required by both
parts together assuming we have a code that achieves the entropy.

Question: Try to construct your own codes for each part and compute the total length
required. How close does it come to the value using the entropy ?

Question: is either of the above better than the original scheme ?



Information Content, Entropy and Prediction

This section gives some more examples of entropy and information content.

The information content (IC) of an event is the amount of new information communicated
when we learn about the event. The information content of the event X = ¢, where X is a
random variable and ¢ is the outcome, is defined as

IC(X =1) =logy ——.
( Z) 082 p(X — Z)
The definition agrees with a number of common-sense ideas regarding ‘information’.

1. More surprising events provide more information.
For example, if X is a random variable representing the current weather in Edinburgh,
the information content of the event ‘sunny’, p(sunny = 0.001), IC = 11 bits, is higher
than that of the event ‘cloudy’, p(cloudy = 0.8), IC = 0.322 bits.

2. Learning that an event that was bound to happen, did happen, provides no information.

Such an event has a probility of 1 and since logy 1 = 0 the IC is 0 bits.

3. Learning the outcome of related random variables reduces the information content.

For example, the information provided by learning that a randomly selected English
character is ‘u’ is lower when we already know that the previous letter was‘q’.

The entropy of a random variable, I(X), is an average of the information content over the
outcomes of the random variable. If a variable X has N possible outcomes,
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Entropy can be thought of as the average uncertainty of the random variable. Prediction is
casier when the entropy is lower since we are less uncertain (on average).

For example, the entropy of a coin is maximized when it is fair i.e. when p(heads = 0.5) and
p(tail = 0.5), I(X) = 0.5 -logy 5 + 0.5 - logy 7= = logy2 = 1 bit. A fair coin is also most
difficult to predict.

When the coin is biased, say, p(heads = 0.8) and p(tails = 0.2), the entropy will be lower i.e.
0.8 - logy ﬁ + 0.2 - logy ﬁ = 0.722 bits, and we can win moncy if we predict heads...

Decision trees predict a class variable by asking questions about (hopefully correlated) at-
tributes of an input example. The answers to these questions reduce the entropy (uncertainty)
of the class assignment making prediction gradually easier at each node in the tree.



