
course overview

Task 6: Coping with Incomplete
Knowledge: Overview

1. Approaches to incomplete knowledge

2. Modeling uncertainty with probabilities

3. Bayes Nets: representation and algorithms for dealing with

probabilities

4. Utilities: from probabilities to Actions

Text: Chapters 13-16 of Russell & Norvig

Introductory Material: Sections 13.1 and 14.7

AI2-CwIK Introduction 1-1

Incomplete Knowledge

Randomness

• You flip a coin. It either comes up H or T.

(truly random.)

• The Weather pattern. Will it rain tomorrow at 2pm?

is it random ?

or maybe we do not have a good enough theory ?

• The traffic jam at 4:45pm on South Bridge.
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Incomplete Knowledge

Aspects of Input

• What is the distance to the nearby wall?

(measurement uncertainty)

• What is written here ?

(input ambiguity)

• Understanding a speaker when there is background noise.

(noise in measurements)
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Incomplete Knowledge

Information not Available

• Does the car across the street have 4 wheels?

(default assumptions)

• A person arrives at the doctor’s describing some symptoms.

What is the diagnosis?

(no complete theory, not enough evidence)

What tests might help get a good diagnosis?

• You have just looked at the rear mirror of the car and now looking

ahead intending to switch lanes.

Is there a car behind in the other lane? (dynamics)
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Incomplete Knowledge

The Qualification Problem
• I need to get to class at 9am and have a plan to leave home half

an hour early and drive to Forest Hill. Would like to conclude

that the plan will get me there in time.

• But, the road may be blocked due to an accident,

• or a heavy fall of snow,

• or the road may be flooded due to an unexpected torrential rain,

• or my car may break down,

• or . . .

We don’t want to (and sometimes cannot) list all possible

qualifications.
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Incomplete Knowledge

Logical Approaches

• Formalise a theory of the world including actions and their results.

• Include a mechanism to derive logical conclusions.

• Include a mechanism to derive conclusions that do not follow

logically but normally hold, e.g. “by default”.

AI2-CwIK Introduction 1-6

Default Logic

• Use first order logic as the base language and add “default rules”

for inference:

• “if you see a car across the street, and it looks ok,

and you can see at least 2 wheels

and there is no other conflicting evidence

then you can conclude that it has 4 wheels”

• “if x is the spouse of y, and x lives in town t,

and there is no other conflicting evidence

then you can conclude that y lives in t.

• These rules are not always true!
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Default Logic

Pattern of inference is not monotonic. For example,

• Seeing a car . . . you conclude that it has 4 wheels, but as you

cross the street you see that the car is on a jack

⇒ you retract your previous conclusion.

• You intend to phone a friend around 11:30am and thus plan to

call them at work. But then your roommate says the friend called

to say they caught a flu. So,

⇒ you revise your previous conclusion

(on friend’s location) and call them at home.
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• Inference pattern of first order logic on its own is monotonic!

Given more evidence we can get more conclusions and never

retract conclusions.

• Default logic, and other logical approaches are known as non-

monotonic reasoning systems.
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Default Logic: Conflicting Conclusions

• May have a problem of conflicting defaults, for example:

• The “Nixon Diamond”

(1) y is a Quaker ⇒ conclude that y is a Pacifist

(2) y is a Republican ⇒ conclude that y is not a Pacifist in t

• Richard Nixon was a Republican and a Quaker
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Resolving Inconsistent Defaults

 x[Republican(x) => ¬Pacifist(x)]

 x[Quaker(x) => Pacifist(x)]

Republican(Nixon) 

Quaker(Nixon)

∀

∀

Pacifist(Nixon) ¬Pacifist(Nixon)

T

• There are two ways to handle inconsistency.

– Truth-Maintenance, or editing inconsistent statements out of

the logic.

– Probabilistic modeling
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Assumption-Based Truth Maintenance
Systems

• One comparatively efficient way of deciding which items to

withdraw is to associate each proposition with the set of axioms

or assumptions that it is consistent with.

• That way we can work out that a plausible way to restore

consistency is to drop the assumption that Nixon is a Quaker.

• The sets of consistent propositions form a partial ordering or

lattice like a version space.

• So we can exploit efficiency of the Version Space algorithm.
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Default Logic: Many Conclusions?

• But what is the right conclusion . . .

(1) if a person sneezes ⇒ conclude they have a cold

(2) if a person allergic to cats sneezes ⇒ conclude there is a cat

around

Now we see a person sneezing. Should we conclude both possible

outcomes? none? how do we choose?
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Modeling Uncertainty with Probabilities

1. Model “causal” information:

(1) if a person has a cold ⇒ they sneeze with probability 75%

(2) if a person has an allergy to cats and there is a cat around

⇒ they sneeze with probability 90%

(3) allergy and colds are otherwise independent

2. Now given an observation (sneeze) compute the probability of the

person having a cold or of a cat in the vicinity.

3. How can we do this?
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Summary

• We need to deal with uncertainty in many forms

• Logical approaches are possible;

appeal to “jumping to conclusions” if no counter evidence exist.

• Can use probabilities to model uncertainty.

• This is the main topic of the module.
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Probabilities and Bayesian Inference

1. Basic Properties of Probability

2. Bayes’ Rule and Inference

3. Product Probability Spaces

Text: Sections 13.2 to 13.6 of Russell & Norvig
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Probabilities

• Can be used to model “objectively” the situation in the world.

• A person with a cold sneezes (say at least once a day) with

probability 75%.

• The objective interpretation is that this is a truly random event.

Every person with a cold may or may not sneeze and does so with

probability 75%.

• Or . . .
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• Probabilities can model our “subjective” belief. For example:

if we know that a person has a cold then we believe they will

sneeze with probability 75%.

The probabilities relate to an agent’s state of knowledge.

They change with new evidence.

We will use the subjective interpretation, though probability theory

itself is independent of this choice.
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Probabilities: Some Terminology
• Elementary Event: Outcome of some experiment e.g. coin

comes out Head (H) when tossed

• Sample Space: SET of possible elementary events e.g. {H, T}.

If sample space, S, is finite, we can denote the number of

elementary events in S by n(S).

• Example: For one throw of a die, the sample space is given by:

S = {1, 2, 3, 4, 5, 6}

and so

n(S) = 6
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• Event: subset of sample space i.e. if event is denoted by E then

E ⊆ S

and also

n(E) ≤ n(S)

• Example: Let

Eo be event “the number is odd” when a die is rolled then

Eo = {1, 3, 5} and n(Eo) = 3

Ee be event “the number is less than 3”when a die is rolled

then Ee = {1, 2} and n(Ee) = 2

AI2-CwIK Probabilities 2-5



Probabilities: Running Example

• We throw 2 dice (each with 6 sides and uniform construction).

• Each elementary event is a pair of number (a, b).

• The sample space i.e. set of elementary events is

{(1, 1), (1, 2), . . . , (6, 6)}

• Events i.e. subsets of the sample space include:

E1: outcomes where the first die has value 1.

E2: outcomes where the sum of the two numbers is even.

E3: outcomes where the sum of the two numbers is at least 11.
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• Events A and B are Mutually Exclusive if A ∩B = ∅

(the empty set).

• All pairs of elementary events are mutually exclusive.

• In Example:

Events E1 and E3 are mutually exclusive

Events E1 and E2 are not

Events E2 and E3 are not
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Classical Definition of Probability

If the sample space S consists of a finite (but non-zero) number of

equally likely outcomes, then the probability of an event E, written

Pr{E} is defined as

Pr{E} =
n(E)

n(S)

This definition satisfies the axioms of probability:

1. Pr{E} ≥ 0 for any event E since n(E) ≥ 0 and n(S) > 0

2. Pr{S} = n(S)
n(S) = 1

3. If A and B are mutually exclusive: Pr{A∪B} = Pr{A}+Pr{B}
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This is because the intersection of A and B is empty i.e. A∩B = ∅.

So, n(A ∪B) = n(A) + n(B), and therefore

Pr{A ∪B} =
n(A ∪B)

n(S)

=
n(A) + n(B)

n(S)

=
n(A)

n(S)
+

n(B)

n(S)

= Pr{A}+ Pr{B}

Note: Pr{A ∩B} is also denoted by Pr{A, B} and Pr{A and B}
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Probability Distributions

• It is sufficient to specify the probability of elementary events.

• Other probabilities can be computed from these.

• In example: Each die gives a result 1,2,3,4,5,6 with probability
1
6 independently of the other die. So each elementary event has

probability 1
36

• Pr{E1} = Pr{(1, 1)}+ . . . Pr{(1, 6)} = 6/36 = 1/6
• Pr{E2} = Pr{(1, 1)}+ Pr{(1, 3)}+ Pr{(1, 5)}+

Pr{(2, 2)}+ Pr{(2, 4)}+ Pr{(2, 6)}+ . . . = 1/2
• Pr{E3} = Pr{(5, 6)}+ Pr{(6, 5)}+ Pr{(6, 6)} = 3/36 = 1/12
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Properties of Probabilities

• We know that Pr{A} = n(A)
n(S)

• Since event A is a subset of sample space S,

0 ≤ n(A) ≤ n(S) i.e. 0 ≤
n(A)

n(S)
≤ 1

• So, we have 0 ≤ Pr{A} ≤ 1

• If Pr{A} = 0 then event cannot occur e.g. mutually exclusive

events A and B, since then Pr{A ∩B} = Pr{∅} = 0

• If Pr{A} = 1 then event is certain to occur
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Properties of Probabilities

• Let A denote the event “A does not occur”

Pr{A} =
n(A)

n(S)

=
n(S)− n(A)

n(S)

= 1−
n(A)

n(S)
= 1− Pr{A}

• So, Pr{A} = 1− Pr{A}
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Conditional Probability

• If A and B are two events and Pr{B} 6= 0, then the probability

of A given B has already occurred is written Pr{A|B} and

defined as

Pr{A|B} =
Pr{A ∩B}

Pr{B}

• Where does this formula come from?

Since we know that event B has already occurred, we know that
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the sample space for event A given event B is B.

Pr{A|B} =
n(A ∩B)

n(B)

=
n(A ∩B)/n(S)

n(B)/n(S)

=
Pr{A ∩B}

Pr{B}
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Conditional Probability: Example

• Pr{E1 ∩ E2} = Pr{(1, 1)}+ Pr{(1, 3)}+ Pr{(1, 5)} = 1/12

Pr{E2 ∩ E3} = Pr{(6, 6)} = 1/36

Pr{E1 ∩ E3} = Pr{φ} = 0

• Pr{E1|E2} = Pr{E1∩E2}
Pr{E2}

= 1/12
1/2 = 1/6

Pr{E2|E3} = Pr{E2∩E3}
Pr{E3}

= 1/36
1/12 = 1/3

Pr{E1|E3} = Pr{E1∩E3}
Pr{E3}

= 0
1/12 = 0
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More on Conditional Probability

• Conditional probability rule is often written and used in the

following form:

Pr{A ∩B} = Pr{A|B}Pr{B}

Since Pr{A ∩B} = Pr{B ∩A}, we also have:

Pr{A ∩B} = Pr{B|A}Pr{A}

and hence that Pr{A|B}Pr{B} = Pr{B|A}Pr{A}
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• if A and B are mutually exclusive events then, as Pr{A∩B} = 0

and Pr{B} 6= 0 (from def. of conditional probability), it follows

that Pr{A|B} = 0.

• Next, we look at an important result: Bayes’ Theorem
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Bayes’ Theorem

• We know that Pr{A ∩B} = Pr{A|B}Pr{B} = Pr{B|A}Pr{A}

• Reorganizing we get:

Pr{A|B} =
Pr{A}Pr{B|A}

Pr{B}

• Dice Example: Pr{E2|E1} = Pr{E2}Pr{E1|E2}
Pr{E1}

= (1/2)(1/6)
1/6 = 1/2

• This will be the basis of our Bayesian inference and learning

procedures!
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Independent Events
If the occurrence or non-occurrence of an event A does not influence

in any way the probability of an event B, then the event B is

(statistically) independent of event A, and we have:

Pr{A|B} = Pr{A}

Since

Pr{A|B}Pr{B} = Pr{B|A}Pr{A}

⇒ Pr{A}Pr{B} = Pr{B|A}Pr{A}

⇒ Pr{B|A} = Pr{B} also holds
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But, we also know that

Pr{A ∩B} = Pr{A|B}Pr{B}

So, A and B independent also means that

Pr{A ∩B} = Pr{A}Pr{B}

• In Dice Example:

Events E1 and E2 are statistically independent

Events E2 and E3 are not

Events E1 and E3 are not

• Independence can be used to simplify computations!
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Independence: Example

• Sometimes we know from the probabilistic experiment that certain

events are “physically” independent. In this case they are also

statistically independent.

• Event E4: outcomes where the second die has value 4.

• Since each throw of the die is independent (the first throw does

not change the probabilities of outcomes of the second throw), E1

and E4 are independent. They are also statistically independent.

• This implies: Pr{E1 ∩ E4} = Pr{E1}Pr{E4} = 1/36

Can be verified using equations as above.
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Probability Distributions

• A random variable associates a value with each possible outcome

of an experiment e.g. X = H or X = T for outcomes of tossing

a coin.

• An elementary event is an assignment of values to all variables.

• A probability distribution describes the probability of every

elementary event and can be represented using a probability

table.

• A Joint Probability Distribution contains information about

probabilities of all variables and the connections between them.
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Joint Distribution: Example

• Two variables A and B each of which can take values (0, 1) (i.e.

boolean variables).

• Table has one column for each variable

• Table has 2× 2 = 4 rows

•

A B Pr{}

0 0 v00

0 1 v01

1 0 v10

1 1 v11

– Pr{A = 0, B = 0} = v00

– Pr{A = 1, B = 0} = v10

– Particular probabilities denoted by

Pr{}

– The table is denoted by Pr(A, B)
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Joint Probability Distribution: Another
Example

• We have 4 variables describing the situation about a person with

an allergy to cats:

Cold: person has a cold

Cat: there is a cat in the vicinity of the person

Allergy: the persons is showing an allergic reaction

Sneeze: person sneezed

• Each of these is Boolean: taking values 0 or 1.

• The joint distribution can be described in a table of size 24 = 16.
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Marginal Distribution
• This is an induced probability distribution for one variable or more

variables obtained from a joint distribution.

• To compute the marginal distribution of one or more variables,

we ignore the other variables.

Example:

A B Pr{}

0 0 v00

0 1 v01

1 0 v10

1 1 v11

Pr(A, B)

A Pr{}

0 v00 + v01

1 v10 + v11

Pr(A)

B Pr{}

0 v00 + v10

1 v01 + v11

Pr(B)
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• How do we “ignore variables”?

• Example: We ignore B when computing marginal distribution for

A by summing it out. This is described generically by:

Pr(A) =
∑

v∈{0,1}

Pr{A, B = v}

• Similarly, for marginal distribution of B, we have:

Pr(B) =
∑

v∈{0,1}

Pr{A = v, B}
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• And for particular values:

Pr{A = 0} =

1∑

v=0

Pr{A = 0 and B = v}

Dice Example:

Pr{X1 = 1} =

6∑

v=1

Pr{X1 = 1 and X2 = v} = 1/6

Allergy Example:
Pr{Cold = 1} = Σ . . . = 0.1

Pr{Cold = 0} = Σ . . . = 0.9

Pr{Sneeze = 1} = Σ . . . = 0.136885
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Marginal Distribution: Another Example
C A B Pr{}

0 0 0 v000

0 0 1 v001

0 1 0 v010

0 1 1 v011

1 0 0 v100

1 0 1 v101

1 1 0 v110

1 1 1 v111

Pr(A, B|C)

Sum out B:

C A Pr{}

0 0 v000 + v001

0 1 v010 + v011

1 0 v100 + v101

1 1 v110 + v111

Pr(A|C) =
∑

v Pr{A, B = v|C}
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Inference using the Joint

• Compute probabilities of events:

Pr{Cold = 1 and Sneeze = 1} =
∑

. . . = 0.0902875

• Causal Inference:

Pr{Sneeze = 1|Cold = 1} = 0.0902875
0.1 = 0.902875

• Diagnostic Inference:

Pr{Cold = 1|Sneeze = 1} = 0.0902875
0.136885 = 0.66

• Inter-Causal Inference:

Pr{Cold = 1|Sneeze = 1 and Allergy = 1}
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Normalization

• Pr{Cold = 1|Sneeze = 1} = Pr{Sneeze=1|Cold=1}Pr{Cold=1}
Pr{Sneeze=1} = A

α

• Pr{Cold = 0|Sneeze = 1} = Pr{Sneeze=1|Cold=0}Pr{Cold=0}
Pr{Sneeze=1} = B

α

• But A
α + B

α = 1 so α = A + B and

• Pr{Cold = 1|Sneeze = 1} = A
A+B

• Will often use normalization to avoid computing the denominator.
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Conditional Independence

• Events A and B are statistically independent given event C iff

Pr{A ∩B|C} = Pr{A|C}Pr{B|C}

• This is equivalent to the condition Pr{A|B and C} = Pr{A|C}

• As in standard independence this can simplify the computations.

• Event E5: outcomes where at least one die has value 6.

• Pr{E2|E3} = 1/3

• Pr{E2|E3 and E5} = 1/3
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Conditional Independence: Derivation

Pr{A ∩B|C} =
Pr{A ∩B ∩ C}

Pr{C}

=
Pr{A|B ∩ C}Pr{B ∩ C}

Pr{C}

=
Pr{A|B ∩ C}Pr{B|C}Pr{C}

Pr{C}

So, Pr{A|C}Pr{B|C} = Pr{A|B ∩ C}Pr{B|C}

⇒ Pr{A|B ∩ C} = Pr{A|C}
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Independence in Joint Probability
Distributions

• In joint probability distributions we can express a more general

form of independence.

• X1 and X2 are independent iff Pr(X1|X2) = Pr(X1)

• This means that for all v1 and v2

Pr{X1 = v1|X2 = v2} = Pr{X1 = v1}

• And similarly for conditional independence

X1 and X2 are independent given X3 iff

Pr(X1|X2, X3) = Pr(X1|X3)

• This means that for all v1, v2, v3
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Pr{X1 = v1|X2 = v2, X3 = v3} = Pr{X1 = v1|X3 = v3}
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Bayesian Networks

1. Representing Distributions with Bayesian Networks

2. How to Construct the Network

3. Inference using Networks

Text: Sections 14.1 to 14.5 of Russell & Norvig
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Product Probability Spaces

• We have n variables, X1, . . . , Xn

• Each variable Xi ranges over a finite set of values vi,1, . . . , vi,ki
.

• We can write a big table with n columns and
∏

i ki rows describing

the probability of every elementary event.

• Table grows exponentially with n.

Not feasible unless n is very small.
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Bayesian Networks

• Allow us to represent distributions more compactly.

• Take advantage of the structure available in a domain.

• Basic idea: represent dependence and independence explicitly.

• If Pr(X1 ∩X2) = Pr(X1)Pr(X2) then we can use two

1-dimensional tables instead of a 2-dimensional table.

• If each has 6 values, this means 12 entries instead of 36!
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Example
• Edges represent “direct influence”

• Assume that Cat and Cold do not

depend on other variables.

• Allergy depends only on Cat

• Sneeze depends on Cold and Allergy

• Sneeze depends on Cat

BUT only through Allergy

• For each node we associate a

conditional probability table

Cold
Cat

Sneeze

Allergy
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The network structure expresses independence of variables.

• Pr(Cat|Cold) = Pr(Cat)

• Pr(Allergy|Cat, Cold) = Pr(Allergy|Cat)

• Pr(Sneeze|Allergy, Cat, Cold) = Pr(Sneeze|Allergy, Cold)

More generally, the joint distribution can be expressed as the product

of the distributions in the network. Example:

Pr(Cat, Cold, Allergy, Sneeze) =

Pr(Cat)Pr(Cold)Pr(Allergy|Cat)Pr(Sneeze|Allergy, Cold)
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•
Pr{Cat = 0} Pr{Cat = 1}

0.99 0.01

•
Pr{Cold = 0} Pr{Cold = 1}

0.90 0.10

•

Cat Pr{Allergy = 0} Pr{Allergy = 1}

0 0.95 0.05
1 0.20 0.80

•

Cold Allergy Pr{Sneeze = 0} Pr{Sneeze = 1}

0 0 1.00 0.00
0 1 0.10 0.90
1 0 0.10 0.90
1 1 0.05 0.95
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Example: Joint Distribution in Terms of
Conditional Probability Distributions

We can use the conditional probability rule (in its various forms)

and Bayes’ Theorem to express Joint Distributions in terms of

conditional probability distributions (stored with nodes in Bayesian

network as Conditional Probability Tables (CPTs)).

Example: Express Pr(Cat, Cold, Allergy, Sneeze) in terms of

known conditional probability distributions (tables):

Pr(Cat),Pr(Cold),Pr(Allergy|Cat),Pr(Sneeze|Allergy, Cold)
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Pr(Cat, Cold, Allergy, Sneeze)

= Pr(Sneeze|Allergy, Cat, Cold)Pr(Allergy, Cat, Cold)

by conditional probability rule applied to distributions

= Pr(Sneeze|Allergy, Cold)Pr(Allergy|Cat, Cold)Pr(Cat, Cold)

by conditional probability rule applied to distributions

= Pr(Sneeze|Allergy, Cold)Pr(Allergy|Cat)Pr(Cat|Cold)Pr(Cold)

by conditional probability rule applied to distributions

= Pr(Sneeze|Allergy, Cold)Pr(Allergy|Cat)Pr(Cat)Pr(Cold)
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Another Useful Result
Pr(A, B|C) = Pr(A|B, C)Pr(B|C) †

Proof:

RHS = Pr(A|B,C)Pr(B|C) =
Pr(A,B, C)

Pr(B, C)
·
Pr(B,C)

Pr(C)

=
Pr(A,B, C)

Pr(C)

=
Pr(A,B|C)Pr(C)

Pr(C)

= Pr(A,B|C) = LHS

Also: Pr{A = a,B = b|C = c} = Pr{A = a|B = b, C = c}Pr{B = b|C = c}
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Bayesian Networks

• We have n variables, X1, . . . , Xn

• The graph has n nodes, each corresponding to one variable.

• The graph is acyclic; there is no directed path from Xi to itself.

• For each node associate a conditional probability table (CPT)

describing Pr(Xi| parents(Xi)).

• The joint probability distribution can be expressed as the product

of the distributions in the network:

Pr(X1, X2, . . . , Xn) =
∏n

i=1 Pr(Xi| parents(Xi))
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• Pr{Cat=0, Cold=1, Allergy=0, Sneeze=1} =

Pr{Cat=0}Pr{Cold=1}Pr{Allergy=0|Cat=0}

Pr{Sneeze=1|Allergy=0, Cold=1} =

0.99 · 0.1 · 0.95 · 0.9 = 0.084645

• So to represent a distribution we need to represent the network

and CPTs.

• If for all nodes the number of parents is small then all CPTs are

small and we have a compact representation.
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How to Construct a Network?

• Can represent any distribution using a network.

By repeated application of Pr{A, B} = Pr{A|B}Pr{B}

• Choose ordering of variables X1, . . . , Xn.

• For i=1 to n

Add Xi to network with Pr(Xi|X1, . . . , Xi−1).

• The joint distribution is:

Pr(X1, X2, . . . , Xn) =
∏n

i=1 Pr(Xi|X1, . . . , Xi−1).

• But this is no improvement as Xn is connected to all predecessors

(so we need a huge table for it).
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• Instead, at each stage choose a subset such that

parents(Xi) ⊆ {X1, . . . , Xi−1}.

• Choice of parents must satisfy

Pr(Xi|X1, . . . , Xi−1) = Pr(Xi| parents(Xi))

so that Xi is independent of other predecessors given its parents.

• If parents(Xi) is small then representation is compact.

For example if for all Xi, | parents(Xi)| ≤ 3 then

instead of 2n entries we have n23 = 8n entries !

• How should we order the variables?

• Causal links tend to produce small representations.

• Choose “root causes” first. Then continue with causal structure

as much as possible.

AI2-CwIK Bayesian Networks 3-13

Example

You are at work, neighbour John calls to say your home alarm is

ringing, but neighbour Mary doesn’t call. Sometimes alarm set off

by minor earthquakes. Is there a burglar?

Variables and ordering:

Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:
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The Network

B

T
T
F
F

E

T
F
T
F

P(A)

.95

.29

.001

.001

P(B)
.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

T
F

.90

.05

A P(M)

T
F

.70

.01

.95
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What if we choose another ordering?
Variable ordering (1):

MaryCalls, JohnCalls, Alarm, Burglar, Earthquake

Variable ordering (2):

MaryCalls, JohnCalls, Earthquake Burglar, Alarm,

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls
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How to Construct a Network

• May work with domain experts to decide on structure and then

find values of probabilities.

• Choosing a “bad order” can have adverse effect:

Large probability tables.

“Unnatural” dependencies, that are in turn hard to estimate.

• Luckily experts are often good at identifying causal structure, and

prefer giving probability judgements for causal rules.

• Learning the CPTs and even the structure is an active research

area.
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Computing with Bayes Nets

• We have seen how to reconstruct the joint distribution from the

network.

• Can we compute other probabilities efficiently?

Pr{Cold = 1 and Sneeze = 1} =?

Pr{Sneeze = 1|Cold = 1} =?

Pr{Cold = 1|Sneeze = 1} =?

Pr{Cold = 1|Sneeze = 1 and Allergy = 1} =?
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Computing a Marginal Distribution

We want to compute Pr(Cold, Sneeze).

By conditional probability rule:

Pr(Cold, Sneeze) = Pr(Sneeze|Cold)Pr(Cold)

Recall that we have the following CPTs attached to nodes of our

network:

Pr(Cat) Pr(Cold)

Pr(Allergy|Cat) Pr(Sneeze|Allergy, Cold)
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We need to compute Pr(Sneeze|Cold):

Pr(Sneeze|Cold)

=
∑

v∈{0,1}

Pr{Sneeze, Allergy = v|Cold}

by def. of marginal distribution (we sum Allergy out)

=
∑

v∈{0,1}

Pr{Sneeze|Allergy = v, Cold}Pr{Allergy = v|Cold}

by result (†)

=
∑

v∈{0,1}

Pr{Sneeze|Allergy = v, Cold}Pr{Allergy = v}

Since Allergy is independent of Cold
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We can read out Pr{Sneeze|Allergy = v, Cold} for all v using our

CPT for Pr(Sneeze|Allergy, Cold).

We now need to compute the marginal distribution Pr(Allergy).

Pr{Allergy = v}

=
∑

v2∈{0,1}

Pr{Allergy = v, Cat = v2}

by def. of marginal distribution (we sum Cat out)
∑

v2∈{0,1}

Pr{Allergy = v|Cat = v2}Pr{Cat = v2}

by def. of conditional probability rule
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So, we have now expressed all computations in terms of the CPTs

in the network. We can write the computation fully as:

Pr(Cold, Sneeze)

= (
∑

v∈{0,1}

(Pr{Sneeze|Allergy = v, Cold}

∑

v2∈{0,1}

Pr{Allergy = v|Cat = v2}Pr{Cat = v2}))

Pr(Cold)

In general, “sum out” variables that do not appear in the question.

Try to maintain small tables along the way.
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Pr{Allergy = 0} Pr{Allergy = 1}

0.9425 0.0575
Pr(Allergy)

Cold Pr{Sneeze = 0} Pr{Sneeze = 1}

0 0.94825 0.05175

1 0.097125 0.902875

Pr(Sneeze|Cold)

Cold Sneeze Pr{}

0 0 0.853425

0 1 0.046575

1 0 0.0097125

1 1 0.0902875

Pr(Sneeze and Cold)
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Causal Inference

• To compute Pr{Sneeze = 1|Cold = 1}

• First compute Pr(Allergy) as in previous example.

• Then compute

Pr{Sneeze = 1|Cold = 1} =∑
v∈{0,1} Pr{Sneeze=1|Allergy=v, Cold=1}Pr{Allergy=v}
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Diagnostic Inference

• Use Bayes’ Rule to compute Pr{Cold = 1|Sneeze = 1}

• A1 = Pr{Cold=1|Sneeze=1} =
Pr{Sneeze=1|Cold=1}Pr{Cold=1}

Pr{Sneeze=1} = N1
Pr{Sneeze=1}

• A0 = Pr{Cold=0|Sneeze=1} =
Pr{Sneeze=1|Cold=0}Pr{Cold=0}

Pr{Sneeze=1} = N0
Pr{Sneeze=1}

• But A0 + A1 = 1 so

• (Pr{Cold=0|Sneeze=1}, Pr{Cold=1|Sneeze=1}) =

Normalise(N0, N1) = ( N0
N0+N1

, N1
N0+N1

)
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Diagnostic Inference

• From the CPT we have:

Pr{Cold = 0} = 0.90 and Pr{Cold = 1} = 0.10

• Pr{Sneeze=1|Cold=0} = 0.05175

Pr{Sneeze=1|Cold=1} = 0.902875

computed as in previous example using Pr(Allergy)

• N0 = 0.05175 · 0.90 = 0.046575

• N1 = 0.902875 · 0.10 = 0.0902875

• Pr{Cold=1|Sneeze=1} = N1
N0+N1

= 0.66
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Inference in Burglary Example
• Use B, E, A, J, M to denote variables

• Compute Pr{A=1|E=1, J=1}

• Pr{A=1|E=1, J=1} = Pr{J=1|A=1,E=1}Pr{A=1|E=1}
Pr{J=1|E=1}

• By computing and normalizing the following:

Pr{J=1|A=b, E=1}Pr{A=b|E=1} for b ∈ {0, 1}

• Pr{A = 1|E=1} = 0.001 · 0.95 + 0.999 · 0.29 = 0.29066

• Pr{A = 0|E=1} = 0.70934

• Pr{J=1|A=1, E=1}Pr{A=1|E=1} = 0.90·0.29066 = 0.261994

• Pr{J=1|A=0, E=1}Pr{A=0|E=1} = 0.05·0.70934 = 0.035467

• Pr{A=1|E=1, J=1} = 0.261994
0.261994+0.035467 = 0.88
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Inference in Burglary Example: Derivation

Pr{A = 1|E = 1, J = 1}

=
Pr{A = 1, E = 1, J = 1}

Pr{J = 1, E = 1}

=
Pr{J = 1|A = 1, E = 1}Pr{A = 1, E = 1}

Pr{J = 1, E = 1}

=
Pr{J = 1|A = 1, E = 1}Pr{A = 1|E = 1}Pr{E = 1}

Pr{J = 1|E = 1}Pr{E = 1}

=
Pr{J = 1|A = 1, E = 1}Pr{A = 1|E = 1}

Pr{J = 1|E = 1}

AI2-CwIK Bayesian Networks 3-28

Pr{A = 1|E = 1}

=
Pr{A = 1, E = 1}

Pr{E = 1}

by def. of marginal distribution:

=
Σv∈{0,1}Pr{A = 1, E = 1, B = v}

Pr{E = 1}

=
Σv∈{0,1}Pr{A = 1|E = 1, B = v}Pr{E = 1, B = v}

Pr{E = 1}

since E (earthquake) and B (burglary) are independent:

=
Σv∈{0,1}Pr{A = 1|E = 1, B = v}Pr{E = 1}Pr{B = v}

Pr{E = 1}
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= Σv∈{0,1}Pr{A = 1|E = 1, B = v}Pr{B = v}

by expanding summation:

= Pr{A = 1|E = 1, B = 0}Pr{B = 0}+ Pr{A = 1|E = 1, B = 1}Pr{B = 1}

by probabilities from CPTs in network

= (0.29)(0.999) + (0.95)(0.01) = 0.29066
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Poly-Tree Networks
Poly-Tree is a singly connected network. There are no cycles even

ignoring the direction of edges.

E
 +
X

. . .

. . .

E
 −
X

U1

X

Um

Yn

Znj

Y1

Z1j
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Inference

• The problem of inference in Bayes Networks is NP-Hard.

• Can always compute via the joint but this may not be efficient.

• Sneeze and Burglary examples were Poly Trees.

• Efficient Algorithms are known for graphs with poly-tree structure.

• Otherwise, try to turn graph into a tree, or use simulation methods

to approximate the probability.

• Simulation is not guaranteed to give good answers but works well

in some cases.

• Generates samples from the prior Joint Distribution.

• cf. Estimation of conditional probability.
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Inference by Simulation

• To compute Pr{X = v1|Y = v2} = Pr{X=v1,Y =v2}
Pr{Y =v2}

• Repeat many times:

choose random values for all nodes using CPTs

by choosing first for nodes with no parents

and then for nodes whose parents have been chosen

if Y = v2 was chosen then:

counter = counter +1

if X = v1 was chosen then Xcounter = Xcounter+1

Return Xcounter/Counter

• May require many rounds if Y = v2 occurs with low probability.
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Simulation by Likelihood Weighting

• Improves the simulation by forcing evidence values (Y = v2) to

be chosen.

• Samples only the non-evidence variables, weighting each event

by the likelihood that the event accords to the evidence, and

incrementing the two counters in proportion to the likelihood of

the event.

• Likelihood of an event is the product of the conditional

probabilities that each evidence variable takes the given value

given the values that have been chosen randomly for its parents.

• Unlikely events contribute less to the counts.
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Computing Likelihood Weighting of an
Event

• Initialise weight w = 1

• In sampling if a node Xi corresponds to an evidence variable

choose the given value vi.

• Update the weight

w ← w · Pr{Xi = vi| values chosen for parents}

• This ensures that an event which assigns low a priori probability

to the actual values of the evidence variables is given less weight

in the simulation.
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Example

• Compute Pr{Allergy = 1|Cold = 1, Sneeze = 1}

• Set up general counter CG and counter CA for Allergy = 1

(both initialised to zero).

• Here we illustrate just one sample

• Choose Cold = 1 so w ← 0.1

• Choose Cat randomly. In the following we assume 0 was chosen.

• Choose Allergy using Pr{Allergy|Cat = 0}.

In the following we assume 0 was chosen.

• Choose Sneeze = 1 and update

w ← w · Pr{Sneeze=1|Cold=1, Allergy=0} = 0.1 · 0.9 = 0.09
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• The round is over.

We forced the evidence to succeed.

But Allergy = 1 did not succeed.

• CG← CG + 1 ∗ 0.09

CA← CA + 0 ∗ 0.09 (no change)

• After Many rounds return CA/CG

• Faster than simple simulation but may still need a long time to

get good answers
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Making Decisions

1. From Probabilities to Decisions

2. Utility as a Basis for Decisions

3. Dynamic Bayesian Networks

Text: Russell & Norvig,

Sections 13.1, 16.1 to 16.5-16.7, 15.5, 17.5
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What is the Conclusion?

• Imagine we have a model with two nodes D → S

• And the CPTs, Pr(D) and Pr(S|D).

• D captures possible diseases, and S possible symptoms.

• NB This assumes only one disease or symptom at a time

or alternatively that D, S capture possible combinations.

• We observe a value S = s and can compute Pr(D|S = s).

• But what should we do with these probabilities?
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Maximum A Posteriori Hypothesis

• Given Pr(D|S = s)

• Choose d that maximises the posterior probability.

• d = argmaxvd
Pr(D = vd|S = s)

• Use treatment for d.

• Is that reasonable?
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MAP and Utilities

• Imagine a similar setting with C → A

• A denotes our alarm being triggered (values 0,1) and C the

possible causes: burglary (b), strong wind (w), system fault (f).

• Pr(A = 1|C) = (0.95, 0.7, 0.07) [ordered by | (b,w,f)]

• Pr{C} = (0.05, 0.10, 0.01)

• We observe A = 1. By Bayes Rule and Pr{A = 1}:

Pr{C|A = 1} = (0.403, 0.595, 0.00059)

• So the MAP is C = w

• But should we really ignore the Alarm? It depends on how much

we may loose (by ignoring or by being distracted)
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Utilities

• Every state (elementary event), say R,

has some utility associated with it, denoted U(R)

• This captures the desirability of this state.

• Using actions we may change probabilities of states.

• In last example we must include a node for consequences of our

actions (catch thief, waste time).

• Even with these new nodes MAP will not help us incorporate the

utilities.

• So more machinery is needed.
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Maximum Expected Utility (MEU)

• The Expected Utility of an action Act given the evidence is

EU(Act|E) =
∑

R∈Result(Act)
Pr{R|E, Act}U(R)

• Maximum Expected Utility: a rational agent should choose action

Act that maximises EU(Act|E).

• Utility is not necessarily “personal benefit”, “monetary situation

of agent” etc. but may include “well being of world”

• In a sort of circular manner we may say that a rational agent’s

utility is implicit in the actions it takes.

• Are human rational according to this definition?

See discussion in R&N
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Example Revisited

• Add an action G (go home to check for burglary)

• And Binary variables T (time wasted) and S (things stolen)

• And probabilities for T, S

Pr{T = 1|G} = 1

Pr{T = 1|¬G} = 0

Pr{S = 1|¬G and C = b} = 1

Pr{S = 1|G or C 6= b} = 0

• And U(C, A, T, S) = (−1) · T + (−10) · S

• EU(G|A = 1) = (−1) · 1 + (−10) · 0 = −1

EU(¬G|A = 1) = (−1) ·0+(−10) ·Pr{S=1|A=1,¬G} = −4.03
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Computing EU(G|A = 1)

• The Expected Utility of an action Act given the evidence is

EU(Act|E) =
∑

R∈Result(Act)

Pr{R|E, Act}U(R)

• The utilities are for T and S are:

U(T = x) = (−1) · x and U(S = x) = (−10) · x
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• Compute EU(G|A = 1) as follows:

EU(G|A = 1)

=
∑

R∈Result(G)

Pr{R|A = 1, G}U(R)

= Pr{T = 1|A = 1, G} · U(T = 1) + Pr{T = 0|A = 1, G} · U(T = 0)

+Pr{S = 1|A = 1, G} · U(S = 1) + Pr{S = 0|A = 1, G} · U(S = 0)

= Pr{T = 1|G} · (−1) + (0) · (0) + (0) · (−11) + Pr{S = 0|A = 1, G} · (0)

—as time wasted is independent of alarm being triggered given G

= (1) · (−1) = −1
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Computing EU(¬G|A = 1)
=

∑

R∈Result(¬G)

Pr{R|A = 1,¬G}U(R)

= Pr{T = 1|A = 1,¬G} · U(T = 1) + Pr{T = 0|A = 1,¬G} · U(T = 0))

+Pr{S = 1|A = 1,¬G} · U(S = 1) + Pr{S = 0|A = 1,¬G} · U(S = 0)

= (0) · (−1) + Pr{T = 0|A = 1,¬G} · (0)

+Pr{S = 1|A = 1,¬G} · (−10) + Pr{S = 0|A = 1,¬G} · (0)

= Pr{S = 1|A = 1,¬G} · (−10)

= (0.403) · (−10) = −4.03
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Computing Pr{S = 1|A = 1,¬G}

Pr{S = 1|A = 1,¬G}

=
∑

v

Pr{S = 1|A = 1,¬G, C = v} · Pr{C = v|A = 1,¬G}

=
∑

v

Pr{S = 1|¬G, C = v} · Pr{C = v|A = 1}

Continues on next slide
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= Pr{S = 1|¬G, C = b} · Pr{C = b|A = 1}+

Pr{S = 1|¬G, C = w} · Pr{C = w|A = 1}+

Pr{S = 1|¬G, C = f} · Pr{C = f |A = 1}

= (1) · (0.403) + (0) · (0.595) + (0) · (0.00059)

(probs. from slide 4-4)

= 0.403
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Decision Networks

• Augment Bayesian networks to capture these ideas explicitly.

• Chance Nodes represent random variables as before

• Decision Nodes represent actions that can be chosen by agent.

• Utility Nodes represent utility as a function of variables.

Can represent using tables likes CPTs (and sum over tables).

• For inference or evaluating what actions to take:

(1) fix values for decision nodes

(2) compute Pr(unobserved|observed and decision nodes)

(3) compute EU(Actions)
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Example Revisited

C A

S

T

G

values: b,w,f

values: 0,1

values: 0,1

values: 0,1

(0−> 0)
(1−>−10)

(0−>0)
(1−>−1)
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Value of Information

• The best action now yields:

EU(α|E) = maxAct

∑
R∈Result(Act)

Pr{R|E, Act}U(R)

• Imagine that at any state we can choose to perform a “sense”

operation and find out the value of one of the variables Xi.

• Suppose we sense the value of Xi to be v.

• The best action now yields:

EU(αv|E, Xi = v) =

maxAct

∑
R∈Result(Act)

Pr{R|E, Act, Xi = v}U(R)

• But we don’t know in advance which v is the case.
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• The expected value of the sense operation is:

EV S(Xi|E) =
∑

v Pr{Xi = v|E}EU(αv|E, Xi = v)

• And subtracting the original utility we get the

Value of Perfect Information:

V PI(Xi|E) = EV S(Xi|E)− EU(α|E)

• Sense operations may have a cost as well which must be weighted

against the VPI.
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Example

• You have access to two printers P1 a colour printer shared by

everyone in the building and P2 a b/w private one.

• P1 may have a long queue in which case you have to wait.

P2 prints immediately but with less good quality.

• 3 chance nodes P1Q (binary; for its queue) and

P1S, P2S for status of printers (waiting (w), printed (p), idle(i))

• One decision node sending job to printer: GP1 or GP2.

• U(P1Q, P1S, P2S) =

(P1S=w) · (−10) + (P1S=p) · 10 + (P2S=p) · 3
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The Network

P1Q P1S

P2S

GP1/GP2

values: w,p,i

(w−>−10)
(p−> +10)
(i −>   0)

(p−>+3)
(i −> 0)values: p,i
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Example Continued

• Pr{P1Q = 1} = 0.7

• Other links are deterministic (Pr{} is 0 or 1).

• The best action with no evidence is GP2:

EU(GP1) = 0.7 · (−10) + 0.3 · 10 = −4

EU(GP2) = 1 · 3 = 3

• But things improve if we sense P1Q:

(if P1Q = 0 the best action is GP1 otherwise it is GP2)

EV S(P1Q) =

Pr{P1Q=0}EU(GP1|P1Q=0) + Pr{P1Q=1}EU(GP2|P1Q=1) =

0.3 · (0 + 10 + 0) + 0.7 · (0 + 0 + 3) = 5.1

• V PI(P1Q) = 5.1− 3 = 2.1
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Dynamic Belief Networks
STATE EVOLUTION MODEL

SENSOR MODEL

Percept.t−2 Percept.t−1 Percept.t Percept.t+1 Percept.t+2

State.t−2 State.t−1 State.t State.t+1 State.t+2

• Divide variables into State and Percept (the observable part)

• State evolution model describes change with time

• Sensor model describes behaviour of observations

• Both are the same in every “slice”

• Network calculates probability distribution for state at time t
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Dynamic Belief Networks and HMMs
• Every Hidden Markov Model (HMM) can be represented as a

DBN with a single state and percept variable.

• Every DBN can be represented as an HMM by combining all the

n state variables into a single variable with n-tuple values.

• The DBN is much more efficient than the equivalent HMM,

because for sensible temporal probability models, each state

variable has few parents in the preceding slice.

• The relation between DBNs and HMMs is roughly analogous

to that between ordinary Bayes Nets and fully tabulated joint

distributions.
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Dynamic Belief Networks
• Work with 2 slices at any one time and change network with time

• Pr(Pt|St) = Pr(P |S)

• Pr(St+1|St) = Pr(Snew|Sold)

• Start with a prior distribution over S0, denoted Bel∗(S0)

• Set i = 0; Network always has slices i, i + 1

• Estimation: Observe Pi and update the belief function

Bel(Si) = Pr(Si|Pi) = Pr(P |S)Bel∗(Si)
Pr(Pi)

= Normalise(Pr(P |S)Bel∗(Si))

• Prediction: Compute Bel∗(Si+1) = Pr(Snew|Sold)Bel(Si)

• Rollup: Remove slice i; add slice i + 2; set i← i + 1
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A dynamic belief network for monitoring lane position of vehicle

Position
Sensor.t

Position
Sensor.t+1

  Sensor
Accuracy
      .t

Weather.t

Terrain.t

Sensor
Failure.t

Weather.t+1

Terrain.t+1

Sensor
Failure.t+1

  Sensor
Accuracy
    .t+1

    Lane
Position.t+1

  Lane
Position.t
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Dynamic Decision Networks

Sense.t Sense.t+1 Sense.t+2 Sense.t+3

U.t+3D.tD.t−1 D.t+1 D.t+2

State.t State.t+1 State.t+2 State.t+3
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Dynamic Decision Networks

• Add decision and utility nodes.

• Can deal with fixed finite horizon by putting utility on last step.

(Other variations exist.)

• Similar to a planning problem augmented with probabilities.

• Cannot devise a plan ahead of time as we do not know what the

percept will be.

• But can choose best next action by propagating with all

information we have at the moment.
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Uncertainty in User Models

The Lumiere Project by Horvitz et al. (1998)

• A Bayesian help system.

• The technology underpinning Microsoft’s Office Assistant

• Model relationships among user’s goals and needs, program’s

state, actions recently taken, and words in user query.

• Use a dynamic network to model changes over time.

• Estimate user’s needs and whether they might want to get advice.

• Can decide to offer help or respond to queries.
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Space Shuttle Monitoring and Control

The Vista project by Horvitz and Barry (1995)

• Human flight controllers work in controlling a space shuttle.

• Large amount of raw information.

• Vista provides decision support to flight controllers by managing

the information displayed to them.

• Bayesian networks used to model sub-systems (e.g. engine),

negative utilities of various anomalous conditions, user’s beliefs,

user’s actions, the effect of display on user’s decisions.

• The system presents processed information and likely diagnoses
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as well as suggesting possible actions.

• System operating in Johnson Space Center, Houston, Texas
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Medical Diagnosis

Pathfinder system by Heckerman et al (1992).

• Diagnosis system for lymph node tissue.

• Bayesian network models diseases and symptoms.

• System offers decision support by suggesting likely diagnoses and

identifying tests that will help diagnosis.

• Commercialized as IntelliPath; deals with 18 tissue types.
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Medical Diagnosis

TRAUMAID system by Webber et al (1998).

• Diagnosis system for gunshot and knife wounds.

• Bayesian network models location of trauma.

• System offers decision support by suggesting likely diagnoses and

identifying tests that will help diagnosis.

• Uses Utilities in a Decision Network to decide whether it is worth

intervening with such decision support!

• Its diagnoses and treatments were evaluated as slightly better

than actual human treatments for real cases.
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Travel Arrangements

COMIC System by Moore et al. (2005).

• User-specific Utilities determine use of contrastive words like

“but” in Machine-Human dialog.

User: I want to travel from Edinburgh to Brussels, arriving by 5 pm.

Student: There s a direct flight on BMI with a good price. It arrives

at four ten p.m. and costs one hundred and twelve pounds.

The cheapest flight is on Ryanair. It arrives at twelve forty five

p.m. and costs just fifty pounds, but it requires a connection

in Dublin.
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BusClass: You can fly business class on British Airways, arriving at four

twenty p.m., but you d need to connect in Manchester. There

s a direct flight on BMI, arriving at four ten p.m., but there s

no availability in business class.
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Summary

• Must deal with uncertainty in various forms.

• Logical approaches are possible.

• Probabilities can be used to model uncertainty.

• Bayesian inference provides a sound way of updating beliefs given

new evidence.

• Graphical network structures can be used to make this more

efficient computationally (and hence feasible).

• Probabilities + utilities lead to decision theory, a prescriptive

treatment of “rational decision making”.

• We can model this with decision networks.
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• And Deal with change over time with dynamic decision networks.

• Interesting Applications.

• A lot more needed (both modelling and computationally).

• An active area of research.
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