AlI2 Module 3: Assignment (Part A)

(Amended by David Talbot, d.r.talbot@sms.ed.ac.uk)*
Division of Informatics

January 2005

This document describes Part A of the assignment for AI2 Module 3. The assignment
must be submitted electronically as follows. You should combine together whatever files
you develop for the different parts of the exercise into a single file and submit that file.
The file should be in a format that can be loaded directly into Prolog (i.e. non-program
text should be in comments). The file should be submitted electronically by 5pm, Friday,
28th January 2005. Late penalties will be applied in the standard way to submissions.
To submit the file use: submit ai2 ai2bh B1 FILE where FILE is the name of your file.
All the files required for this part of the assignment can be found at:

http://www.inf.ed.ac.uk/teaching/courses/ai2/module3/assessed/index.html

If you have any problem, queries or are just stuck please feel free to email me at
d.r.talbot@sms.ed.ac.uk or, from the 11th January 2005, find me in Rm.9, 3rd floor of
2 Buccleuch Place during my office hours; Tuesday 2-4 and Thursday 11-12.

1 Learning Decision Trees

For this assignment you should implement a version of the Decision Tree Learning Algo-
rithm (see figure 18.5 of Russell&Norvig reprinted on slide 2-21). The work is divided into
smaller parts so as to make the task easier. The various sub-parts can be done indepen-
dently. Note that your code should accompanied by comments explaining it. Part of the
marks for the exercise will be given to good documentation.

There are two data sets associated with this assignment. One describes the restaurant
domain of tutorial 2 with the same example set. The other describes data collected on ani-
mals at a zoo. Given the information collected on each animal the problem is to determine
whether it is a mammal (yes) or not (no).

*Written by Paul Crook based on material by Roni Khardon

The data files are rest.pl and zoo.pl respectively. You may find the restaurant example
easier to use while debugging your programs but should submit results as instructed below.
Two other files are provided in the same directory: decision.pl and tests.pl. The
contents of decision.pl are explained below. The file tests.pl includes code for tests
that you have to run after completing each part of the program. Instructions on submission
of tests are given below.

You should use SICStus Prolog on the dai machines to run this code. To run SICStus
Prolog type sicstus at UNIX command prompt, you should then be presented with the
Prolog prompt | ?-. Once in Prolog you will need to load (consult) the tests.pl file,
decision.pl file, the appropriate data file, either rest.pl or zoo.pl, as well as your code,
before you can run the tests. To consult a file type [FILE]. including the full stop —
at the Prolog prompt, where FILE is the file name without the .pl part, e.g. [tests]. .

NB ensure that you have consulted the correct data set for each test, the test
routines do not check this. If you have to run tests first on the restaurant data set and
then on the zoo data set, it is probably worth halting the Prolog interpreter (by typing
halt.) and restarting it to ensure that the previous data file has been cleaned out.

You should assume that the training and test data can be manipulated only via the fol-
lowing interface predicates. These predicates are provided in the data files. Each training
or test data item has a unique name and a set of attributes and values.

attributes(7AttrList) - succeeds with AttrList the list of attributes used
in the data.

classes(-ClassesList) - succeeds with ClassList the list of possible classi-
fication results.

values (+Attr,-ValueList) - succeeds if the list of possible values for attribute
Attr is ValueList.

training data(-NameList) - succeeds with NameList the list of names of all
training data items.

test_data(-NameList) - succeeds with NameList the list of names of all test
data items.

attr_value(+Attr,+Name,?Value) - succeeds if for the data item with name
Name the value of attribute Attr is Value.

class (+Name,-Class) - succeeds if the data item with name Name is classified
with class Class.

Several additional predicates are provided in the file decision.pl You should study these
as they might help you in the implementation. A brief description is:

all_have_class(+Names,?Class) - succeeds if the data items whose names
form the list Names are all in class Class.

majority_value (+Names,-Class) - succeeds if Class is the class of the ma-
jority of the data items whose names form the list Names.



member (?X,7L) - the standard predicate.

delete(+Item,+List,-DelList) - succeeds with DelList including all ele-
ments in List but Item.

val_split (+Attr,+Value,+Examples,-SExamples) - succeeds if Examples is
a list of example names, SExamples is the subset of Examples for which the
attribute Attr has value Value.

entropy (Examples,I) - succeeds if Examples is a list of example names, and
I is the value of the entropy in Examples using the formula on slide 2-33.

number (+Goal,—Num) - succeeds if the number of solutions of goal Goal is Num.

The operation of number is shown in the following example:

age(john,25) .
age (mary,26) .
age(fred,25) .
age(sue,27) .

?7- number (age (X,25) ,1) .
N=2

2 Decision Tree Representation (15%)

We represent decision trees using Prolog terms of the form:
t (Attribute,List0fValuesAndSubTrees)

The List0fValuesAndSubTrees will include each possible value for the attribute exactly
once. Each element in the list has the form Value-SubTree or Value-Leaf. A leaf of the
tree is represented by the labels yes or no. For example, the term:
t(alt, [
y-t(hun, [y-yes, n-no 1),
n-t(bar, [y-no, n-yesl)

n.
corresponds to the following tree (for the restaurant domain):
at
Yy n
hun bar
n y n

y
i O ] R T I U

Write a predicate
tree_size(+Tree,-Size) - succeeds if Size is the number of leaves in Tree.

Here, as well as in other parts, you may assume that the input (here a tree) is in the right
format. You may find using the cut (!) useful.

For this part (Part 2) you should submit the code plus the results of running testla,
testlb from the test file in the restaurant domain. Assuming you have consulted the
tests.pl file, type testla. at the Prolog prompt to run testla.

Note: For recording the output when a test is run you may either cut and paste or
alternatively use the unix script command. When you use script filename, the system
saves everything appearing on the screen to the file filename. Start script before starting
Prolog. You must end the command by pressing Control-D after halting Prolog. You can
then cut and paste from the file.

3 Classifying Examples (25%)

Write three predicates as follows:

evaluate (+Tree,+Ex,?Class) - succeeds if Class is the classification given
by Tree to the example named Ex. (Class is the leaf value found for the
example Ex by following the branches of the given Tree; it is not necessarily
the same as the example’s classification in the data set. You can assume
that Ex is the name of one of the examples in the currently load data set.)

tree_correct (+Tree,+Ex) - succeeds if the class given by the tree to the ex-
ample is the correct class for the example Ex.

testtree(+Tree) - always succeeds. It tests the tree against all the test exam-
ples and as a side effect prints the percentage of examples classified correctly.

For this part (Part 3) you should submit the code plus the results of running test2a,
test2b, test2c, test2d, test2e from the test file in the restaurant domain.

4 Learning Algorithm (25%)

In this part you should implement a simple version of the learning algorithm. You should
write your program in a modular way so that it uses the following predicate in order to
choose which attribute to split on at each stage.



choose_attribute (+Mode, +Attrs,+Examples,-Best,-Rem) - succeeds if, in
order to classify the examples whose names form the list Examples, the
best attribute to choose from the list Attrs is Best, and the remaining
attributes form the list Rem. Mode is either simple or gain.

For this part (Part 4), we define a simple choose_attribute/5 predicate to allow testing
of the learning algorithm code. The simple version of choose_attribute/5 just selects
the first attribute out of the given list as the best. It can be defined by:

choose_attribute(simple, [First|Remaining],_,First,Remaining).

The top-level interface to your program should be the predicate:

learntree (+Mode,-Tree) - succeeds if the decision tree resulting from the
learning algorithm applied to the training data is Tree. It should work
correctly with any implementation of choose_attribute that takes Mode
as a parameter.

For the learning algorithm itself you may find it useful to follow the structure of figure 18.5
of Russell&Norvig using 4 clauses for the algorithm, 3 dealing with the base cases and the
final one with the recursive case.

Branches should be included even if no examples exist for a particular attribute value. You
should of course never have any leaves that are the empty list, each leaf should contain the
classification of the examples at that node. When there are no examples for a particular
attribute value, then the leaf’s value should be the classification of the majority of the
examples at the parent node (unless there’s no such majority, in which case take a random
decision whether the class is yes or no).

For this part (Part 4) you should submit the code plus the results of running test3r in
the restaurant domain and test3z in the zoo domain. NB Ensure that you have consulted
the appropriate data files for each test.

5 Choosing Attribute Using Information Gain (25%)

In this part you should implement the information gain heuristic for choosing attributes.
You may want to make use of the entropy predicate described above. Write three predi-
cates as follows:

remainder (+Attr,+Examples,-R) - succeeds with R having the value of the
remainder() formula (as described on Slide 2-34) for attribute Attr for the

set of examples whose names form the list Examples.

5

gain(+Attr,+Examples,-Gain) - succeeds with Gain having the value of the
Gain() formula as described on Slide 2-34. Examples and Attr are as in
remainder.

choose_attribute(gain,AttrList,Examples,Best,Remaining) -

a version of choose_attribute that succeeds when Best is the attribute that
should be chosen according to the information gain heuristic (as described
on slide 2-34).

For this part (Part 5) you should submit the code plus the results of running testé4ra,
test4rb, testdrc, testdrd, testdre intherestaurant domain and test4za, testédzb,
testd4zc, testdzd in the zoo domain.

6 Performance (10%)

Write a paragraph in which you discuss the accuracy of the categorisation learnt by the
decision tree. If you were faced with a problem where a decision tree has not performed
well, discuss the possible reasons for this, including ways in which you might be able to
improve the performance.

Include you answer to this part (Part 6) as commented lines at the end of the file that you
submit.



