AI2 Module 1 Practical 2

Bob Fisher
School of Informatics

Autumn 2004

Abstract

This document describes the second assignment (of 2) for assessment on AI2
Module 1. The main goal is to develop the resolution algorithm in class.

Task Background

Lecture 12 introduced the ideas behind the resolution algorithm as a tool for logical proof
by contradiction. This assignment implements and tests the resolution algorithm.

The key input data structure is a logical expression, which (here) is a conjunction of
terms t; Aty A ... At, (which means ¢; AND ¢, AND ... AND t,), where each term ¢; is
the disjunction of elementary terms. Each disjunction has the form e; Ves V...V e, (which
means e; OR e3 OR ... OR e,,), where each e; is either an elementary proposition v or
the negation of an elementary proposition —v.

Thus, valid short expressions are (a Vb) A (—ma VbV c) and (aV —bV) A (—c). Real
expressions automatically generated while solving problems could be many thousands of
clauses long.

The key step in resolution is to combine two clauses of the form PV) and =PV R
to produce @ V R. Here P, () and R can be any logical term. So, resolving a V b and
—a V —c produces bV —c. The purpose of using resolution is to derive the empty clause by
resolving a with —a. Whenever this pair is resolved, then there is a contradiction and the
process can stop. Otherwise, it tries to derive everything it can, and stops when no more
new resolutions are possible.

When getting the resolved result) V R, some simplifications might be needed:

1. If there are any duplicate terms in the result (e.g. a V bV a), then they should be
removed (e.g. to bV a).

2. If a result clause contains both a and —a (e.g. a V bV —a), then this result clause is
a tautology, and should be not used further.

3. If a result clause is subsumed by any existing clause (e.g. a V bV c is subsumed by
a V b because anything that makes a V b true also makes a V bV ¢ true), then the
more complex clause should be not used further. This improves the efficiency of the
resolution algorithm.

You can read more about resolution in Russell and Norvig. Fortunately, this chapter
is online: aima.eecs.berkeley.edu/newchap07.pdf.

In Prolog, the representation for the logical expressions is the same as in practical 1, as
a list of lists: [C1, C2, ... CN], where the clauses Ci are logically ANDed together.
Each Ci is a list of the form [Vi1, Vi2, ... Vi3], where the Vij are logically ORed
together. Each Vij is either a Prolog atom like a or the negation of an atom not(a). For
example, the representation for the two expressions given above is [[a,b], [not(a),b,c]]
and [[a,not(b),c],[not(c)]]. True and false are encoded as 1 and 0 respectively. Your
algorithm should work with expressions that are arbitrarily large.

We use the standard logic tables:

P q|pVqg|pAg|p
1 1 1 1 0
1 0 1 0 0
0 1 1 0 1
0 0 0 0 1
Requirements

The assignment requires you to develop one main and one auxiliary predicate:

e The main predicate is resolve(+Set)). The input Set is a Prolog list encoding the
set of clauses. The predicate should attempt all resolutions between each pair of
clauses Ci and Cj and succeed when done, printing either “No contradiction derived”
or “Contradiction derived”. Note that whenever you succeed in resolving two clauses
to produce a new clause, the new clause needs to be added to the Set and then also
used for additional resolutions.

e You must also develop an auxiliary predicate
resolveclause(+Clausel,+Clause2,-Var,-Result)) that scans the input expres-
sions Clausel and Clause2 and resolves them if possible, returning the selected
variable (Var) and the resulting resolved clause Result. Note that there might be
several ways to resolve the expressions, as in a V bV ¢ and —a V =b V d (which
resolve to a tautology). In Prolog form, this would be resolving Ci=[a,b,c] and
Ci=[not(a),not(b),d]. If no resolution is possible, then the predicate fails.

Other Information

You also need to include this statement at the start of your program:
“:- use_module(library(lists)).” to load the list predicate libraries.

To run your program, you need to start up SICSTUS Prolog by typing sicstus on a
DICE machine. Then you need to consult your solution file. (Eg. type “[solution].” if
your solution is stored in the file “solution.pl”).

Some hints

1.

2.

An example solution has been done in about 35 lines of code.

The solution can be found in less than 1 second on a DICE machine. If your algorithm
is taking much longer than this, think about the efficiency and possibly some bugs.

You might want to use the Sicstus manual:
Wwww.sics.se/sicstus/docs/latest/html/sicstus.html/.

. You might use some functions from Sicstus list library. This provides many standard

list manipulation predicates that could be used in this practical, such as member/2,
select/3, permutation/2, remove duplicates/2. See
www.sics.se/sicstus/docs/latest/html/sicstus.html/Lists.html

for more details.

Set up some test examples to debug your support predicates before you start to debug
the main predicate.

Use a smaller expression to debug your program before trying it with bigger ones.

. Think recursion.

General Instructions

You should put your solution to the tasks specified below into a single file, which should
be in a format that can be loaded straight into Prolog (i.e. non-program text should be in
comments). This file should be submitted electronically by 4pm, Friday 5 November.
The format of the submission line should be:

submit ai2 ai2a A2 FILE

where FILE is the name of your file. I estimate it will take 15 hours work for the assignment.
Most of the tasks described here involve writing Prolog programs. It is important to
realise that programs developed for any serious purpose need to be adequately documented

(eg.

comments, sensible variable names). This will be taken into account in the marking

of your work.
The assignment will be marked by:

| Issue | Percentage |

1. Solution to resolve algorithm 25%
2. Solution to resolveclause algorithm 25%
3. Test results 30%
4. Prolog clarity 20%

The Submission

For your submission, create one executable Prolog file with:

1. Your name and email address (commented out using %). Add a comment line
% TIME=?777
where 777 is your estimate of the time spent on the assignment.

2. The code for resolve and resolveclause predicates and any supporting predicates.

3. The printout obtained when executing
resolve([[a,not(b),c], [not(a),b,not(c)], [al, [not(b)]]) and
resolve ([[not(p21),b11], [not(b11),p12,p21], [not(p12),b11], [not(b11)], [p12]]).
(commented out using %).

Your file should be complete and executable as submitted without any modifications,
when loaded with [solution] and executed with
resolve([[a,not(b),c], [not(a),b,not(c)], [al, [not(b)]1]1) and
resolve([[not (p21),b11], [not(b11),p12,p21]1, [not(p12),b11], [not(b11)], [p121]1)
and other tests. Marks will be deducted if the marker is unable to execute your Prolog
program. Be sure to try executing your program as directly loaded into a fresh instance
of Sicstus to verify that it runs properly. After we have loaded your program, we will test
your code with several different expressions.

You can develop and debug your program using other Prologs but it has to run on
Sicstus Prolog afterwards. This is your responsibility.

Debugging Hints

When debugging: spy and trace are essential tools. If you want to debug a predicate p,
say spy(p). When done, say nospy(p). Prolog will stop every time it gets to p and print p
with its input arguments. Look at these inputs carefully. It also stops when p exits (ie. is
finished executing). Look at the results carefully. Whenever Prolog stops, each time that
you type the return key, Prolog goes to the next predicate. Thus, you can step through
sections of your program.

Similarly, if you have a clause p :- a,b,c. and you think it’s going wrong at predicate
b, then use this: p :- a,trace,b,c. This will start the tracing when your program gets
to b. As before, single step through the predicate calls to see what’s happening. Review

the Prolog debugger at:
www.sics.se/sicstus/docs/latest/html/sicstus.html/Debug-Intro.html.

My experience with Prolog is that I need to trace through every clause at least once to
help ensure that it works.

Plagiarism

Some comments about plagiarism: 1) Submitting another student’s code (even if modified)
as if it is your original work is plagiarism. 2) Assisting another student to plagiarise (eg.
by sharing code without the borrowing student acknowledging the use) is also penalised.
3) Discussing the assignment in broad terms is ok, but not at the level of coding details.
4) If you cannot figure out how to code some portion of your program, you could borrow
someone else’s code, provided you acknowledge whose code it was and label their portion
of your submission clearly. You will not get credit for the other person’s code. 5) Even
partial, non-working submissions get partial credit. 6) A failed assignment is not a ruined
career. Getting caught at plagiarism could ruin it. 7) We use various techniques to detect
plagiarism, including automated tools. 8) If you can’t do the assignments, discuss this with
the course organiser or director of studies. 9) Change the protections on your homework
files and directories so potential plagiarists cannot access your solution. If your file is called
XXX, then use the unix command: chmod go-rwx XXX. Don’t assume that your flatmates
or best friends would never plagiarise from you.

