AI2 Module 1 Practical 1

Bob Fisher
School of Informatics

Autumn 2004

Abstract

This document describes the first assignment (of 2) for assessment on A12 Module
1. The main goal is to develop and compare two approaches to finding truth values
that satisfy an expression.

Task Background

Lecture 7 introduced the ideas behind constraint logic programming as implemented in
Prolog. This assignment implements a constraint logic approach and an exhaustive search
approach to finding the truth values that satisfy a logical expression. By this, we mean
finding the values of t or f for each elementary proposition in an expression.

The key input data structure is a logical expression, which (here) is going to be a
conjunction of terms t; AtoA. . .At, (which means¢; AND t, AND ... AND t,), where each
term t; is the disjunction of elementary terms. Each disjunction has the form e; Ve, V.. . Ve,
(which means e; OR e; OR ... OR e,,), where each e; is either an elementary proposition
v or the negation of an elementary proposition —wv.

Thus, valid short expressions are (aVb) A (—aVbVc) and (aV—-bVe)A(—c). A longer
expression is: (aV-bVe)A(bV-c)A(avVdVe)A(-aVgVe)A(-gV fV—-e)A(-bV
—cV=d)A(—eV gV —d)A(=fV=g)A(aVb)A(—-aV —b). Real expressions automatically
generated while solving problems could be many thousands of clauses long.

In Prolog, the representation for the logical expressions is as a list of lists: [C1,
C2, ... CN], where the clauses Ci are logically ANDed together. Each Ci is a list
of the form [Vi1, Vvi2, ... Vi3], where the Vij are logically ORed together. Each
Vij is either a Prolog atom like a or the negation of an atom not(a). For example,
the representation for the two expressions given above is [[a,b], [not(a),b,c]] and
[[a,not(b),c], [not(c)]]. True and false are encoded as 1 and 0 respectively. Your
algorithm should work with expressions that are arbitrarily large.

We use the standard logic tables:

P q|pVg|pAg|p
1 1 1 1 0
1 0 1 0 0
0 1 1 0 1
0 0 0 0 1
Requirements

The assignment requires you to develop two main and one auxiliary predicates:

e The main predicates are: findtruthl (+Expr,-PropBind) and

findtruth2 (+Expr,-PropBind). The input Expr is a Prolog list encoding the ex-
pression. The returned PropBind is a list of pairs

[PropName, PropValue], where PropName is the name used for the elementary
proposition and PropValue is the value (0 for false and 1 for true) given to that
proposition. findtruthl and findtruth?2 find a set of truth values for each elemen-
tary proposition in PropBind, such that the expression Expr evaluates to true. One
PropBind that satisfies both of the example expressions above is [[a, 1], [b,1], [c,0]].

findtruthl (+Expr,-PropBind) is to solve this problem using constraint logic pro-
gramming. Here the propositions take only two values, so you use expressions like
“Prop in 0..1" to specify their values.

findtruth2 (+Expr,-PropBind) is to solve this problem using exhaustive generation
of all possible values (i.e. 0 and 1) for all propositions.

In both cases, each time you backtrack through the expression, it should generate
another possible solution. lLe.,

((findtruthl (Expr,PropBind) ,print (PropBind) ,nl,fail) ;true)

should generate all solutions.

e You must also develop an auxiliary predicate findvars (+Expr,-PropNames) that
scans the expression Expr and extracts all of the elementary proposition names. L.e.,
it extracts the list [a,b,c] for both of the example expressions above.

e Include in your program two predicates solvel and solve2, which are defined as:
solvel(Expr) :- ((findtruthl(Expr,PropBind),print(PropBind) ,nl,fail);true).
solve2(Expr) :- ((findtruth2(Expr,PropBind),print(PropBind),nl,fail);true).
These find a solution, print it, fail to force backtracking to the next solution, and
finally succeed with a true when backtracking doesn’t find any more solutions.

Other Information

You also need to include these statements at the start of your program:
“:- use_module(library(clpfd)).” and “:- use_module(library(lists)).” to load
the constraint logic and list predicate libraries.

2

To run your program, you need to start up SICSTUS Prolog by typing sicstus on a
DICE machine. Then you need to consult your solution file. (Eg. type “[solution].” if
your solution is stored in the file “solution.pl”).

Some hints

1.

2.

An example solution has been done in about 50 lines of code.

The solution can be found in less than 1 second on a DICE machine. If your algorithm
is taking much longer than this, think about the efficiency and possibly some bugs.

You might want to use the Sicstus manual:
www.sics.se/sicstus/docs/latest/html/sicstus.html/

and particularly the section on constrained logic programming in finite domains:
www.sics.se/sicstus/docs/latest/html/sicstus.html/CLPFD.html.

You might use some functions from Sicstus list library. This provides many standard
list manipulation predicates such as member/2. See
www.sics.se/sicstus/docs/latest/html/sicstus.html/Lists.html

for more details.

Set up some test examples to debug your support predicates before you start to debug
the main predicate.

Use a smaller expression to debug your program before trying it with bigger ones.

. Think recursion.

General Instructions

You should put your solution to the tasks specified below into a single file, which should
be in a format that can be loaded straight into Prolog (i.e. non-program text should be
in comments). This file should be submitted electronically by 4pm, Friday 15 October.
The format of the submission line should be:

submit ai2 ai2ah Al FILE

where FILE is the name of your file. I estimate it will take 15 hours work for the assignment.
Most of the tasks described here involve writing Prolog programs. It is important to
realise that programs developed for any serious purpose need to be adequately documented

(eg-

comments, sensible variable names). This will be taken into account in the marking

of your work.
The assignment will be marked by:

| Issue | Percentage |

1. Solution to findtruthl constraint logic algorithm 20%
2. Solution to findtruth2 combinatorial search algorithm 20%
3. Solution to findvars algorithm 20%
4. Test results 20%
5. Prolog clarity 20%

The Submission

For your submission, create one executable Prolog file with:

1. Your name and email address (commented out using %). Add a comment line
% TIME=?777
where 777 is your estimate of the time spent on the assignment.

2. The code for findtruthl, findtruth2 and findvars predicates and any supporting
predicates.

3. The printout obtained when executing
solvel([[a,b], [not(a),b,c]]) and solve2([[a,b], [not(a),b,c]]) (commented
out using %).

Your file should be complete and executable as submitted without any modifications,
when loaded with [solution] and executed with solvel (Expr) and solve2(Expr). Marks
will be deducted if the marker is unable to execute your Prolog program. Be sure to try
executing your program as directly loaded into a fresh instance of Sicstus to verify that
it runs properly. After we have loaded your program, we will test your code with several
different expressions.

You can develop and debug your program using other Prologs but it has to run on
Sicstus Prolog afterwards. This is your responsibility.

Debugging Hints

When debugging: spy and trace are essential tools. If you want to debug a predicate p,
say spy(p). When done, say nospy(p). Prolog will stop every time it gets to p and print p
with its input arguments. Look at these inputs carefully. It also stops when p exits (ie. is
finished executing). Look at the results carefully. Whenever Prolog stops, each time that
you type the return key, Prolog goes to the next predicate. Thus, you can step through
sections of your program.

Similarly, if you have a clause p :- a,b,c. and you think it’s going wrong at predicate
b, then use this: p :- a,trace,b,c. This will start the tracing when your program gets
to b. As before, single step through the predicate calls to see what’s happening. Review

the Prolog debugger at:
www.sics.se/sicstus/docs/latest/html/sicstus.html/Debug-Intro.html.

My experience with Prolog is that I need to trace through every clause at least once to
help ensure that it works.

Plagiarism

Some comments about plagiarism: 1) Submitting another student’s code (even if modified)
as if it is your original work is plagiarism. 2) Assisting another student to plagiarise (eg.
by sharing code without the borrowing student acknowledging the use) is also penalised.
3) Discussing the assignment in broad terms is ok, but not at the level of coding details.
4) If you cannot figure out how to code some portion of your program, you could borrow
someone else’s code, provided you acknowledge whose code it was and label their portion
of your submission clearly. You will not get credit for the other person’s code. 5) Even
partial, non-working submissions get partial credit. 6) A failed assignment is not a ruined
career. Getting caught at plagiarism could ruin it. 7) We use various techniques to detect
plagiarism, including automated tools. 8) If you can’t do the assignments, discuss this with
the course organiser or director of studies. 9) Change the protections on your homework
files and directories so potential plagiarists cannot access your solution. If your file is called
XXX, then use the unix command: chmod go-rwx XXX. Don’t assume that your flatmates
or best friends would never plagiarise from you.

