AGTA Tutorial 7

Please attempt the question before your tutorial.

1. Consider the 6-state MDP depicted in Figure 1.

In this MDP, states s_5 and s_6 are controlled by the player (the controller), whereas the other states are controlled by "nature" (random).

Suppose the player's objective is to optimize the probability of reaching state s_6 starting at each state s_i , i = 1, ..., 5.

Write the Bellman optimality equations for this MDP with this objective.

Compute the optimal probabilities, p_i^* , of reaching state s_6 starting from state s_i , for i = 1, ..., 5, and also compute an optimal strategy for the player.

2. Consider the *atomic network congestion game*, with three players, described by the directed graph in Figure 2.

In this game, every player i (for i = 1, 2, 3) needs to choose a directed path from the source s to the target t. Thus, every player i's set of possible actions (i.e., its set of pure strategies) is the set of all possible directed paths from s to t.

Each edge e is labeled with a sequence of three numbers (c_1, c_2, c_3) . Given a profile $\pi = (\pi_1, \pi_2, \pi_3)$ of pure strategies (i.e., s-t-paths) for all three players, the cost to player i of each directed edge, e, that is contained in player i's path π_i , is c_k , where k is the total number of players that have chosen edge e in their path. The total cost to player i, in the given profile π , is the sum of the costs of all the edges in its path π_i from s to t. Each player of course wants to minimize its own total cost.

Compute a pure strategy Nash Equilibrium in this atomic network congestion game.

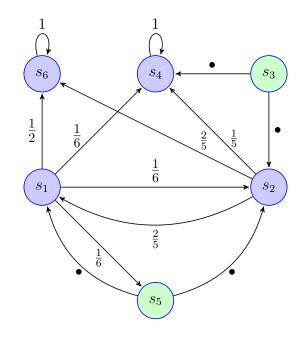


Figure 1: A 6-state MDP.

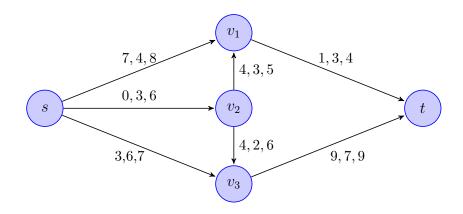


Figure 2: Atomic network congestion game