AGTA Tutorial sheet 6 (solutions)

Question 1

Consider a game graph G = (V, E, vy, F'), where the (finite) set of vertices
V = V1 |J V2 is partitioned into set of vertices V7 (belonging to player 1) and set
of vertices V5 (belonging to player 2), E being the set of edges of G. We are also
given a start vertex vg € V, and a set F' C V of target (good) vertices. Denote
E(v) the set of all successor vertices for v, i.e E(v) = {v/ € V|(v,v) € E}.
We can assume, without loss of generality, that Vv, E(v) # &, i.e every vertex
has at least one successor vertex. (This is because if there were any vertices
without successors we could just add an edge from any such vertices to a new
“absorbing dead-end” vertex with a self-loop to itself, so that if we every reach
a vertex without any successor we will never thereafter reach any vertex in F'.)

Let II denote the set of infinite paths in G. For 7w € II, m = vgvy..., let us
denote the set of states that appear infinitely often in 7 as

inf(m) ={v € V|i>0,3j >i,0; = v}

The play 7 is a win for player 1 if inf(m) N F # &, and otherwise it is a win
for player 2 (i.e a loss for player 1).

Our goal is an efficient algorithm for computing which player has a winning
strategy, and for computing a memoryless winning strategy for that player, given
such a game, starting at the start vertex vg.

For any set of nodes S C V, let Win/(S) denote the set of nodes v € V
such that, starting from v player 1 has a winning strategy to force the game to
reach a vertex in S in at least one or more steps (so, we do not necessarily have
S C Win/(9)).

It is easy to adapt the algorithm given in class for the win-lose reachability
game on a graph (see the slides for Lecture 12, page 8), to compute the set
Win! (S). Namely, given the set S C V, the algorithm for computing Win (S)
is as follows:

1. Initialize: Win} := {v € V; | 3(v,v’) € E such that v’ € S} U
{veVy |V(v,v') e E: v eS8}
Stl = @;

2. Repeat
Foreach v & Win|:
If (pl(v) =1 & F(v,v') € E: v € Win})
Win := Winj U{v}; St1 := St; U{v—v'};
If (pllv) =2 & YV (v,v') € E: v € Winj US)
Win) := Win} U {v};
Until The set Win} does not change;
Return(Win})



When this algorithm halts, the final set Win/ that it returns is precisely
the set Winj(S). Morever, the algorithm also computes the (partial) pure
memoryless strategy St; for player 1 such that using this strategy, starting
from every vertex v € Win) (S), the play will reach a vertex in S in one or more
steps, no matter what player 2 does.

Furthermore, we can also use the computed set Win{(S) to easily derive
a memoryless strategy Sto for player 2 which makes sure that, starting from
any vertex v € Win)(S), no matter what player 1 does, the set S will not
be reached in one or more steps. Namely, the strategy Sty for player 2 is
constructed as follows: since we have assumed (without loss of generality) that
every vertex has at least one outgoing edge, it follows that for every vertex
v & Win)(S) such that v € V4, there must exist an outgoing edge (v,v’') € E to
a vertex v’ € Win{ U S (otherwise, v would have been added to Win} during
the algorithm). The strategy Sts for player 2 simply chooses one such outgoing
edge v — v for every such vertex v € V, such that v ¢ Win{(S). (For all
other vertices v € Vo where v € Win{(S), it doesn’t matter what edge player 2
chooses to play from those vertices in its memoryless strategy Sto.)

Suppose F' is the set of “target” vertices that player 1 would like to visit
infinitely often in the game. Let us now consider the following sequence of
subsets of F'.

Let Fy := F, and for all integers ¢ > 0, let

Fi+1 =FnN Wm’l(FZ)

(We could also equivalently define F;q := F; N Win! (F};).)

It can be shown, by induction on ¢, that F; denotes the set of target vertices
v € F starting from which player 1 has a strategy to revisit target vertices in F' at
least ¢ times. Note that we can compute the sets Fj iteratively, by repeatedly
applying the above algorithm to compute the sets Win)(F;), i = 0,1,2,.... Tt
is also easy to show (by induction on 7) that:

F=F,DF D2FDF;...

In other words, F; O F;11, for all i € N.

Thus, for each i € N, either F;1; C F;, in which case |Fj11| < |F;| — 1, or
else F;41 = F;. Now, notice that F is a finite set. Thus if |F| = k then, clearly
there is some smallest ¢ < k such that F; = F; 11 = Fi40 = .. ..

Let F* be equal to F; for the smallest ¢ < k such that F; = Fj4 .

Note that player 1 has a memoryless strategy, St;, computed by the algo-
rithm that computes Win) (F*), such that starting at every v € F*, using St;,
the play reaches a vertex in F* in one or more steps, regardless what player 2
does. Hence in fact (by reusing that same memoryless strategy St;), starting
from every vertex v € F'* player 1 has a strategy to infinitely often visit a node
in F'*, regardless what player 2 does.

Finally, Win)(F*) is the set of all vertices (including vertices not in F)
starting from which player 1 has a winning strategy to force visiting vertices



in F infinitely often, and the memoryless strategy to do so is given by St;
computed when we compute Win (F*).

The algorithm for solving a reachability game on a graph (i.e., computing
a set Win/(S)), can be done in linear time O(|E| + |V|) in the size of the
game graph. Thus computing each F; at iteration i of the algorithm requires
O(JE| + |V]) running time. Since there are at most |F| = k iterations, the
running time of the algorithm is O(|F|(|E| + |V|)).



