AGTA Tutorial sheet 6 (solutions)

Question 1

Consider a game graph $G = (V, E, v_0, F)$, where the (finite) set of vertices $V = V_1 \bigcup V_2$ is partitioned into set of vertices V_1 (belonging to player 1) and set of vertices V_2 (belonging to player 2), E being the set of edges of G. We are also given a start vertex $v_0 \in V$, and a set $F \subset V$ of target (good) vertices. Denote E(v) the set of all successor vertices for v, i.e. $E(v) = \{v' \in V | (v, v') \in E\}$. We can assume, without loss of generality, that $\forall v, E(v) \neq \emptyset$, i.e. every vertex has at least one successor vertex. (This is because if there were any vertices without successors we could just add an edge from any such vertices to a new "absorbing dead-end" vertex with a self-loop to itself, so that if we every reach a vertex without any successor we will never thereafter reach any vertex in F.)

Let Π denote the set of infinite paths in G. For $\pi \in \Pi$, $\pi = v_0 v_1 \dots$, let us denote the set of states that appear infinitely often in π as

$$inf(\pi) = \{ v \in V | \forall i \ge 0, \exists j \ge i, v_j = v \}$$

The play π is a win for player 1 if $inf(\pi) \cap F \neq \emptyset$, and otherwise it is a win for player 2 (i.e a loss for player 1).

Our goal is an efficient algorithm for computing which player has a winning strategy, and for computing a memoryless winning strategy for that player, given such a game, starting at the start vertex v_0 .

For any set of nodes $S \subseteq V$, let $Win'_1(S)$ denote the set of nodes $v \in V$ such that, starting from v player 1 has a winning strategy to force the game to reach a vertex in S in at least one or more steps (so, we do *not* necessarily have $S \subseteq Win'_1(S)$).

It is easy to adapt the algorithm given in class for the win-lose reachability game on a graph (see the slides for Lecture 12, page 8), to compute the set $Win'_1(S)$. Namely, given the set $S \subseteq V$, the algorithm for computing $Win'_1(S)$ is as follows:

1. Initialize:
$$Win'_1 := \{v \in V_1 \mid \exists (v, v') \in E \text{ such that } v' \in S\} \cup \{v \in V_2 \mid \forall (v, v') \in E : v' \in S\};$$

 $St_1 := \emptyset;$

2. Repeat

For each $v \notin Win'_{1}$: If $(pl(v) = 1 \& \exists (v, v') \in E : v' \in Win'_{1})$ $Win'_{1} := Win'_{1} \cup \{v\}; St_{1} := St_{1} \cup \{v \mapsto v'\};$ If $(pl(v) = 2 \& \forall (v, v') \in E : v' \in Win'_{1} \cup S)$ $Win'_{1} := Win'_{1} \cup \{v\};$ Until The set Win'_{1} does not change; Return(Win'_{1}) When this algorithm halts, the final set Win'_1 that it returns is precisely the set $Win'_1(S)$. Morever, the algorithm also computes the (partial) pure memoryless strategy St_1 for player 1 such that using this strategy, starting from every vertex $v \in Win'_1(S)$, the play will reach a vertex in S in one or more steps, no matter what player 2 does.

Furthermore, we can also use the computed set $Win'_1(S)$ to easily derive a memoryless strategy St_2 for player 2 which makes sure that, starting from any vertex $v \notin Win'_1(S)$, no matter what player 1 does, the set S will not be reached in one or more steps. Namely, the strategy St_2 for player 2 is constructed as follows: since we have assumed (without loss of generality) that every vertex has at least one outgoing edge, it follows that for every vertex $v \notin Win'_1(S)$ such that $v \in V_2$, there must exist an outgoing edge $(v, v') \in E$ to a vertex $v' \notin Win'_1 \cup S$ (otherwise, v would have been added to Win'_1 during the algorithm). The strategy St_2 for player 2 simply chooses one such outgoing edge $v \mapsto v'$ for every such vertex $v \in V_2$ such that $v \notin Win'_1(S)$. (For all other vertices $v \in V_2$ where $v \in Win'_1(S)$, it doesn't matter what edge player 2 chooses to play from those vertices in its memoryless strategy St_2 .)

Suppose F is the set of "target" vertices that player 1 would like to visit infinitely often in the game. Let us now consider the following sequence of subsets of F.

Let $F_0 := F$, and for all integers $i \ge 0$, let

$$F_{i+1} := F \cap Win'_1(F_i)$$

(We could also equivalently define $F_{i+1} := F_i \cap Win'_1(F_i)$.)

It can be shown, by induction on i, that F_i denotes the set of target vertices $v \in F$ starting from which player 1 has a strategy to revisit target vertices in F at least i times. Note that we can compute the sets F_{i+1} iteratively, by repeatedly applying the above algorithm to compute the sets $Win'_1(F_i)$, i = 0, 1, 2, ... It is also easy to show (by induction on i) that:

$$F = F_0 \supseteq F_1 \supseteq F_2 \supseteq F_3 \dots$$

In other words, $F_i \supseteq F_{i+1}$, for all $i \in \mathbb{N}$.

Thus, for each $i \in \mathbb{N}$, either $F_{i+1} \subset F_i$, in which case $|F_{i+1}| \leq |F_i| - 1$, or else $F_{i+1} = F_i$. Now, notice that F is a finite set. Thus if |F| = k then, clearly there is some smallest $i \leq k$ such that $F_i = F_{i+1} = F_{i+2} = \dots$

Let F^* be equal to F_i for the smallest $i \leq k$ such that $F_i = F_{i+1}$.

Note that player 1 has a memoryless strategy, St_1 , computed by the algorithm that computes $Win'_1(F^*)$, such that starting at every $v \in F^*$, using St_1 , the play reaches a vertex in F^* in one or more steps, regardless what player 2 does. Hence in fact (by reusing that same memoryless strategy St_1), starting from every vertex $v \in F^*$ player 1 has a strategy to infinitely often visit a node in F^* , regardless what player 2 does.

Finally, $Win'_1(F^*)$ is the set of all vertices (including vertices not in F) starting from which player 1 has a winning strategy to force visiting vertices in F infinitely often, and the memoryless strategy to do so is given by St_1 computed when we compute $Win'_1(F^*)$.

The algorithm for solving a reachability game on a graph (i.e., computing a set $Win'_1(S)$), can be done in linear time O(|E| + |V|) in the size of the game graph. Thus computing each F_i at iteration *i* of the algorithm requires O(|E| + |V|) running time. Since there are at most |F| = k iterations, the running time of the algorithm is O(|F|(|E| + |V|)).