
AGTA Tutorial sheet 6 (solutions)

Question 1

Consider a game graph G = (V,E, v0, F ), where the (finite) set of vertices
V = V1

⋃
V2 is partitioned into set of vertices V1 (belonging to player 1) and set

of vertices V2 (belonging to player 2), E being the set of edges of G. We are also
given a start vertex v0 ∈ V , and a set F ⊂ V of target (good) vertices. Denote
E(v) the set of all successor vertices for v, i.e E(v) = {v′ ∈ V |(v, v′) ∈ E}.
We can assume, without loss of generality, that ∀v,E(v) 6= ∅, i.e every vertex
has at least one successor vertex. (This is because if there were any vertices
without successors we could just add an edge from any such vertices to a new
“absorbing dead-end” vertex with a self-loop to itself, so that if we every reach
a vertex without any successor we will never thereafter reach any vertex in F .)

Let Π denote the set of infinite paths in G. For π ∈ Π, π = v0v1..., let us
denote the set of states that appear infinitely often in π as

inf(π) = {v ∈ V |∀i ≥ 0,∃j ≥ i, vj = v}

The play π is a win for player 1 if inf(π)∩F 6= ∅, and otherwise it is a win
for player 2 (i.e a loss for player 1).

Our goal is an efficient algorithm for computing which player has a winning
strategy, and for computing a memoryless winning strategy for that player, given
such a game, starting at the start vertex v0.

For any set of nodes S ⊆ V , let Win′1(S) denote the set of nodes v ∈ V
such that, starting from v player 1 has a winning strategy to force the game to
reach a vertex in S in at least one or more steps (so, we do not necessarily have
S ⊆Win′1(S)).

It is easy to adapt the algorithm given in class for the win-lose reachability
game on a graph (see the slides for Lecture 12, page 8), to compute the set
Win′1(S). Namely, given the set S ⊆ V , the algorithm for computing Win′1(S)
is as follows:

1. Initialize: Win′1 := {v ∈ V1 | ∃(v, v′) ∈ E such that v′ ∈ S} ∪
{v ∈ V2 | ∀(v, v′) ∈ E : v′ ∈ S};

St1 := ∅;

2. Repeat
Foreach v 6∈Win′1:

If (pl(v) = 1 & ∃ (v, v′) ∈ E : v′ ∈Win′1)
Win′1 := Win′1 ∪ {v}; St1 := St1 ∪ {v 7→ v′};

If (pl(v) = 2 & ∀ (v, v′) ∈ E : v′ ∈Win′1 ∪ S)
Win′1 := Win′1 ∪ {v};

Until The set Win′1 does not change;
Return(Win′1)
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When this algorithm halts, the final set Win′1 that it returns is precisely
the set Win′1(S). Morever, the algorithm also computes the (partial) pure
memoryless strategy St1 for player 1 such that using this strategy, starting
from every vertex v ∈Win′1(S), the play will reach a vertex in S in one or more
steps, no matter what player 2 does.

Furthermore, we can also use the computed set Win′1(S) to easily derive
a memoryless strategy St2 for player 2 which makes sure that, starting from
any vertex v 6∈ Win′1(S), no matter what player 1 does, the set S will not
be reached in one or more steps. Namely, the strategy St2 for player 2 is
constructed as follows: since we have assumed (without loss of generality) that
every vertex has at least one outgoing edge, it follows that for every vertex
v 6∈Win′1(S) such that v ∈ V2, there must exist an outgoing edge (v, v′) ∈ E to
a vertex v′ 6∈ Win′1 ∪ S (otherwise, v would have been added to Win′1 during
the algorithm). The strategy St2 for player 2 simply chooses one such outgoing
edge v 7→ v′ for every such vertex v ∈ V2 such that v 6∈ Win′1(S). (For all
other vertices v ∈ V2 where v ∈Win′1(S), it doesn’t matter what edge player 2
chooses to play from those vertices in its memoryless strategy St2.)

Suppose F is the set of “target” vertices that player 1 would like to visit
infinitely often in the game. Let us now consider the following sequence of
subsets of F .

Let F0 := F , and for all integers i ≥ 0, let

Fi+1 := F ∩Win′1(Fi)

(We could also equivalently define Fi+1 := Fi ∩Win′1(Fi).)
It can be shown, by induction on i, that Fi denotes the set of target vertices

v ∈ F starting from which player 1 has a strategy to revisit target vertices in F at
least i times. Note that we can compute the sets Fi+1 iteratively, by repeatedly
applying the above algorithm to compute the sets Win′1(Fi), i = 0, 1, 2, . . .. It
is also easy to show (by induction on i) that:

F = F0 ⊇ F1 ⊇ F2 ⊇ F3 . . .

In other words, Fi ⊇ Fi+1, for all i ∈ N.
Thus, for each i ∈ N, either Fi+1 ⊂ Fi, in which case |Fi+1| ≤ |Fi| − 1, or

else Fi+1 = Fi. Now, notice that F is a finite set. Thus if |F | = k then, clearly
there is some smallest i ≤ k such that Fi = Fi+1 = Fi+2 = . . ..

Let F ∗ be equal to Fi for the smallest i ≤ k such that Fi = Fi+1.
Note that player 1 has a memoryless strategy, St1, computed by the algo-

rithm that computes Win′1(F ∗), such that starting at every v ∈ F ∗, using St1,
the play reaches a vertex in F ∗ in one or more steps, regardless what player 2
does. Hence in fact (by reusing that same memoryless strategy St1), starting
from every vertex v ∈ F ∗ player 1 has a strategy to infinitely often visit a node
in F ∗, regardless what player 2 does.

Finally, Win′1(F ∗) is the set of all vertices (including vertices not in F )
starting from which player 1 has a winning strategy to force visiting vertices
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in F infinitely often, and the memoryless strategy to do so is given by St1
computed when we compute Win′1(F ∗).

The algorithm for solving a reachability game on a graph (i.e., computing
a set Win′1(S)), can be done in linear time O(|E| + |V |) in the size of the
game graph. Thus computing each Fi at iteration i of the algorithm requires
O(|E| + |V |) running time. Since there are at most |F | = k iterations, the
running time of the algorithm is O(|F |(|E|+ |V |)).
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