
Tutorial 3: sample solutions
1. We first establish the following:

Claim: A = −AT implies xTAy = −yTAx for all vectors x, y of the right length.

Proof. xTAy = xT (−AT )y = −(xTATy) = −(xTATy)T = −yTAx, where the second
to last step uses the fact that BT = B for all 1× 1-matrices, and the last step uses
the facts that (BT )T = B and (BC)T = CTBT . (One could of course prove the
claim by e.g. direct calculation)

In particular, the claim implies that xTAx = −xTAx, which gives xTAx = 0. This
means that whenever both players play with the same mixed strategy x, they both
have an expected payoff of zero. Thus in any strategy profile (x, y), if one of the
players has a negative expected payoff, they can improve by copying the other players
strategy. Thus no strategy profile giving non-zero expected payoffs can be a Nash
equilibrium of the game.

2. Using the recipe from page 12 of the slides for lecture 4, we get the linear program

Maximize v
Subject to:
(xTA)j ≥ v∑

i xi = 1
xi ≥ 0

Maximize v
Subject to:
2x1 + 7x2 ≥ v
9x1 + 0x2 ≥ v
4x1 + 3x2 ≥ v
x1 + x2 = 1
x1 ≥ 0, x2 ≥ 0

Writing this out explicitly, we get the the linear program

which is equivalent to the linear program:

Maximize v
Subject to:
v − 2x1 − 7x2 ≤ 0
v − 9x1 − 0x2 ≤ 0
v − 4x1 − 3x2 ≤ 0
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x1 + x2 = 1
x1 ≥ 0, x2 ≥ 0

Note that, because we have x1 + x2 = 1, we can express x2 as x2 = (1 − x1). We
can then replace all occurences of x2 in the constraints, to obtain the following
“equivalent” new LP:

Maximize v
Subject to:
v − 2x1 − 7(1− x1) ≤ 0
v − 9x1 − 0(1− x1) ≤ 0
v − 4x1 − 3(1− x1) ≤ 0
x1 + (1− x1) = 1
x1 ≥ 0, (1− x1) ≥ 0

which in turn is equivalent to:

Maximize v
Subject to:
v + 5x1 − 7 ≤ 0
v − 9x1 ≤ 0
v − x1 − 3 ≤ 0
0 ≤ x1 , x1 ≤ 1

We can solve this LP in a number of ways. Let us use Fourier-Motzkin elimination.
In order to eliminate the variable x1, we have to rewrite each inequality so that x1

occurs on one side of the inequality. We get:

Maximize v(1)
Subject to:

x1 ≤
7

5
− 1

5
v

x1 ≤ 1

1

9
v ≤ x1

v − 3 ≤ x1

0 ≤ x1

To elminate the variable x1, we combine each of the two lower bound inequalities
on x1 with each of the three upper bound inequalities on x1, to obtain the following
six inequalities:
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Maximize v
Subject to:
1
9
v ≤ 7

5
− 1

5
v

v − 3 ≤ 7
5
− 1

5
v

0 ≤ 7
5
− 1

5
v

1
9
v ≤ 1

v − 3 ≤ 1
0 ≤ 1,

By simplifying the inequalities, this can be equivalently expressed as:

Maximize v
Subject to:
v ≤ 9

2

v ≤ 22
6
= 11

3

v ≤ 7
v ≤ 9
v ≤ 4
0 ≤ 1,

Of all the above inequalities, the one that privides the smallest upper bound on v
is the inequality v ≤ 11

3
.

Hence, the maximum value we can obtain for v that satisfies all these inequalities
is v = 11

3
.

We next use this value for v = 11
3
, and plug it back into the inequalities in (??), to

recover the value of x1. We get:

x1 ≤ 7
5
− 1

5
11
3

x1 ≤ 1
1
9
11
3
≤ x1

11
3
− 3 ≤ x1

0 ≤ x1 ,

These can be re-written as:

x1 ≤ 21
15

− 11
15

= 10
15

= 2
3

x1 ≤ 1
11
27

≤ x1
2
3
= 11

3
− 9

3
≤ x1

0 ≤ x1 ,

Note that combining the first and fourth inequalities implies we must have x1 = 2/3.
Combining this with x2 = (1− x1) we get that we must have x2 = 1/3.
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Hence, the minimax value of this two player zero sum game is 11
3
, and furthermore

the unique minmaximizer strategy for player 1 is (2/3, 1/3).

(Can you think of an alternative way to establish the same thing, but which avoids
using LP and Fourier-Motzkin elimination, and instead uses the “useful corollary to
Nash’s theorem”? )
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