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recall LP’s in “Primal Form”
Maximize c1 x1 + c2 x2 + . . . + cn xn

Subject to:
a1,1 x1 + a1,2 x2 + . . . + a1,n xn ≤ b1

a2,1 x1 + a2,2 x2 + . . . + a2,n xn ≤ b2

. . . . . .
am,1 x1 + ai ,2 x2 + . . . + am,n xn ≤ bm

x1, . . . , xn ≥ 0

An LP can concisely be represented in matrix notation:
Define the (m× n)-matrix A by: (A)i ,j = ai ,j . Define (column)
vectors x = [x1, . . . , xn]T , b = [b1, . . . , bm]T &
c = [c1, . . . , cn]T . The LP is:

Maximize cTx
Subject to:
Ax ≤ b
x1, . . . , xn ≥ 0



Solving LPs against an Adversary
Suppose you want to optimize this Primal LP:

Maximize cTx
Subject to:
Ax ≤ b
x1, . . . , xn ≥ 0

Suppose an “Adversary” comes along with a m-vector
y ∈ Rm, y ≥ 0, such that: cT ≤ yTA .
For any solution, x , you may have for the Primal:

cTx ≤ (yTA)x (because x ≥ 0 & cT ≤ yTA)

= yT (Ax)

≤ yTb (because yT ≥ 0 & Ax ≤ b)

So, the adversary’s goal is to minimize yTb, subject to
cT ≤ yTA, and y ≥ 0, i.e., to optimize the Dual LP.



Dual LP, and “Weak Duality”

Given the Primal LP:

Maximize cTx
Subject to:
Ax ≤ b
x1, . . . , xn ≥ 0

The Dual LP is:

Minimize bTy
Subject to:
ATy ≥ c
y1, . . . , ym ≥ 0



The LP Duality Theorem
As we already saw, any feasible value of the primal LP is no
bigger than any feasible value of the dual LP, i.e.:
Proposition (“Weak Duality”) If x∗ ∈ Rn and y ∗ ∈ Rm are
(optimal) feasible solutions to the primal and dual LPs, then:

cTx∗ ≤ bTy ∗

Amazingly, when x∗ and y ∗ are optimal, equality holds!

Theorem(“Strong Duality”, von Neumann’47) One of the
following four situations holds:

1. Both the primal and dual LPs are feasible, and for any
optimal solutions x∗ of the primal and y ∗ of the dual:

cTx∗ = bTy ∗

2. The primal is infeasible and the dual is unbounded.

3. The primal is unbounded and the dual is infeasible.

4. Both LPs are infeasible.
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Simplex and the Duality Theorem

I It turns out, LP Duality follows from the “proof of
correctness” of the Simplex algorithm (which we didn’t
provide).

I In fact, suppose Simplex on the Primal LP halts and
produces an optimal solution vector x∗.
Let y ∗

j = −ĉn+j , where ĉn+j is the coefficient of the
“slack variable” xn+j in the last objective function f (x)
associated with the final dictionary for the primal LP. This
defines y ∗ ∈ Rm, and it turns out the following holds:
Fact y ∗ ≥ 0, ATy ∗ ≥ c , and cTx∗ = bTy ∗.

I So, using Simplex, we can actually compute an optimal
solution for the dual while we compute an optimal
solution for the primal (or find out neither exists).



Complementary Slackness
Useful Corollary of LP Duality: solutions x∗ and y ∗ to the
primal and dual LPs, respectively, are both optimal if and only
if both of the following hold:

I For each primal constraint, (Ax)i ≤ bi , i = 1, . . . , m,
either (Ax∗)i = bi or y ∗

i = 0 (or both).

I For each dual constraint, (ATy)j ≥ cj , j = 1, . . . , n,
either (ATy ∗)j = cj or x∗

j = 0 (or both).

Proof By weak duality
cTx∗ ≤ ((y ∗)TA)x∗ = (y ∗)T (Ax∗) ≤ (y ∗)Tb

By strong duality each inequality holds with equality precisely
when x∗ and y ∗ are optimal. So, when optimal,
(((y ∗)TA)− cT )x∗ = 0.
Since both ((y ∗)TA)− cT ) ≥ 0 and x∗ ≥ 0, it must be that
for each j = 1, . . . , n, (ATy ∗)j = cj or x∗

j = 0.

Likewise, when optimal, (y ∗)T (b − Ax∗) = 0, and thus, for
each i = 1, . . . , m, (Ax∗)i = bi or y ∗

i = 0.



general recipe for LP duals

If the “primal” is:

Maximize cTx
Subject to:
(Ax)i ≤ bi , i = 1, . . . , d,
(Ax)i = bi , i = d + 1, . . . , m,
x1, . . . , xr ≥ 0

Then the “dual” is:

Minimize bTy
Subject to:
(ATy)j ≥ cj , j = 1, . . . , r ,
(ATy)j = cj , j = r + 1, . . . , n,
y1, . . . , yd ≥ 0

Strong Duality holds also in this more general setting.
Fact: The “dual” of the “dual” is the primal.



Duality and the Minimax Theorem
Recall the LP for solving Minimax for Player 1 in a zero-sum
game given by matrix A:

Maximize v
Subject to:
v − (xTA)j ≤ 0 for j = 1, . . . , m2,
x1 + . . . + xm1 = 1,
xi ≥ 0 for j = 1, . . . , m1.

What is the Dual to this LP? It can be shown to be:

Minimize u
Subject to:
u − (Ay)i ≥ 0 for i = 1, . . . , m1,
y1 + . . . + ym2 = 1
yj ≥ 0 for j = 1, . . . , m2.

This is exactly the LP for Player 2’s optimal strategy!
Thus, the minimax theorem follows from LP Duality: the
optimal value for the two LPs is the same.



From Minimax to LP Duality
In fact, LP Duality can also be “derived” from the Minimax
Theorem. Consider the LP (with A a (m × n)-matrix):

Maximize cTx
Subject to:
Ax ≤ b
x1, . . . , xn ≥ 0

Proof (sketch) that Minimax ⇒ LP-duality: Consider the
zero-sum payoff matrix:

B =

 0 A −b
−AT 0 c
bT −cT 0


This is a symmetric zero-sum game: B = −BT . By a simple
exercise, such a game must have minimax value 0, and every
minmaximizer for player 1 is also a maxminimizer for player 2.



Minimax ⇒ LP Duality, continued

Consider a symmetric minimax profile for the zero-sum game
with payoff matrix B:

((Y ∗, X ∗, z), (Y ∗, X ∗, z))

Here Y ∗ is a (row) vector of length m, and X ∗ is a (row)
vector of length n, and z ∈ R.

Suppose z > 0, in the minimax strategy (Y ∗, X ∗, z).
Note that, by the Minimax Theorem, we have

AX ∗ − bz ≤ 0 and cz − ATY ∗ ≤ 0

Letting y ∗ = (1/z)Y ∗, and x∗ = (1/z)X ∗, we would have
Ax∗ ≤ b and ATy ∗ ≥ c , i.e., feasible solutions for the LP and
its Dual.



Minimax ⇒ LP-duality, continued

Moreover, by Useful Corollary to Minimax, player 1 can switch
to ANY pure strategy j in its “support” (i.e., where x1(j) > 0)
and not change its profit. Let it switch to the last row (i.e.,
letting z = 1). Then we also have: bY ∗ − cX ∗ = 0, and hence
by ∗ − cx∗ = 0. Thus,

by ∗ = cx∗

The only thing left to prove is:
Claim If both the LP and its Dual are feasible, the game B
has some minimax profile where z > 0.



remarks

I This last claim can be proved (see [Dantzig’51],
[Raghavan,HGT,Ch.20]) using facts related to the
“geometry” of LP and Minimax: specifically the
“Farkas lemmas”.

I Such “Farkas Lemmas” can actually be proved very nicely
using Fourier-Motzkin elimination.
Here is a Farkas lemma:
Ax ≤ b has no solutions if and only if there exists y ≥ 0
such that yTA = 0 and yTb < 0.
(HW1 asks you to prove this.)

I This proof is somewhat unsatisfactory because the Farkas
lemmas are essentially “equivalent” to LP-duality. (A
recent modification of this proof, by [Adler 2013], avoids
the use of Farkas lemmas.)



Significance of LP Duality
I The Duality Theorem is an extremely important fact. It

has many uses, e.g., in (combinatorial) optimization and
mathematical economics.

I Often, you can “learn something” about an LP by looking
at its dual.

I In Economics, one often sets up an LP to optimize some
economic goal. Often, the dual LP can be meaningfully
interpreted as a problem of optimizing some real
economic “counter” goal.
The fact that the optimal solutions of the two goals are
the same is very powerful.

I Duality has many consequences in algorithms.
For example, duality implies that LPs can be solved in
“NP ∩ co-NP”.
(Of course, we know from [Khachian’79] that the LP
problem is in “P”.)
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more on algorithmic significance
(*) approximation algorithms: hard combinatorial optimization
problems can often be formulated as “Integer Linear Progams”
(ILPs). One can often use the “LP-relaxation” of the ILP
together with its Dual to find approximate solutions and to
bound the proximity of the approximate solution to the
optimal. (See, e.g., [Vazirani’2001].)

(*) Many important results in combinatorics can be viewed as
particular manifestations of LP Duality.

I Max-Flow Min-Cut Theorem; Hall’s Theorem;
Dilworth’s Theorem; Konig-Egervary Theorem......

Each result says “the maximum value of one useful quantity
associated with a combinatorial object is the same as the
minimum value of another useful quantity associated with it.”
These follow from LP-Duality: dual LPs for these
“complementary” quantities can be set up (with solutions that
consist necessarily of integers, due to the LPs’ structure).



food for thought (and “thought for food”)

I Recall the “Diet Problem”. It has the form:

Minimize cTx
Subject to:
Ax ≥ b
x1, . . . , xn ≥ 0

I Construct the dual to this LP.

I What do the dual variables “mean” in the context of the
diet problem?
Try to come up with an interpretation.
(Hint: try to assign consistent “units of measure” to the
primal variables, constants, and coefficients. These will
determine the “units of measure” of the dual variables,
and will guide you toward an interpretation.)

I What is the dual LP trying to optimize?


