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2-person zero-sum games
A finite 2-person zero-sum (2p-zs) strategic game Γ,
is a strategic game where:

• For players i ∈ {1, 2}, the payoff functions
ui : S 7→ R are such that for all s = (s1, s2) ∈ S,

u1(s) + u2(s) = 0

I.e., u1(s) = −u2(s).

ui(s1, s2) can conveniently be viewed as a m1 ×m2

payoff matrix Ai, where:

A1 =


u1(1, 1) . . . . . . u1(1,m2)

... ... ...

... ... ...
u1(m1, 1) . . . . . . u1(m1,m2)


Note, A2 = −A1. Thus we may assume only one
function u(s1, s2) is given, as one matrix, A = A1.
Player 1 wants to maximize u(s), while Player 2
wants to minimize it (i.e., to maximize its negative).
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matrices and vectors
As just noted, a 2p-zs game can be described by an
m1 ×m2 matrix:

A =


a1,1 . . . . . . a1,m2

... ... ...

... ai,j
...

... ... ...
am1,1 . . . . . . am1,m2


where ai,j = u(i, j).

For any (n1 × n2)-matrix A we’ll either use ai,j or
(A)i,j to denote the entry in the i’th row and j’th
column of A.

For (n1 × n2) matrices A and B, let
A ≥ B

denote that for all i, j, ai,j ≥ bi,j.
Let

A > B
denote that for all i, j, ai,j > bi,j.

For a matrix A, let A ≥ 0 denote that every entry is
≥ 0. Likewise, let A > 0 mean every entry is > 0.

Kousha Etessami AGTA: Lecture 4



3

more review of matrices and
vectors

Recall matrix multiplication: given (n1 × n2)-matrix
A and (n2 × n3)-matrix B, the product AB is an
(n1 × n3)-matrix C, where

ci,j =
n2∑

k=1

ai,k ∗ bk,j

Fact: matrix multiplication is “associative”: i.e.,

(AB)C = A(BC)

(Note: for the multiplications to be defined, the
dimensions of the matrices A, B, and C need to be
“consistent”: (n1 × n2), (n2 × n3), and (n3 × n4),
respectively.)

Fact: For matrices A, B, C, of appropriate
dimensions, if A ≥ B, and C ≥ 0, then

AC ≥ BC, and likewise, CA ≥ CB.

(C’s dimensions might be different in each case.)
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more on matrices and vectors
For a (n1×n2) matrix B, let BT denote the (n2×n1)
transpose matrix, where (BT )i,j := (B)j,i.

We can view a column vector, y =


y(1)

...

...
y(m)

, as a

(m×1)-matrix. Then, yT would be a (1×m)-matrix,
i.e., a row vector.

Typically, we think of “vectors” as column vectors
and explicitly transpose them if we need to. We’ll
call a length m vector an m-vector.

Multiplying a (n1×n2)-matrix A by a n2-vector y is
just a special case of matrix multiplication:
Ay is a n1-vector.

Likewise, pre-multiplying A, by a n1-row vector yT ,
is also just a special case of matrix multiplication:
yTA is a n2-row vector.

For a column (row) vector y, we use (y)j to denote
the entry (y)j,1 (respectively, (y)1,j).
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A matrix view of zero-sum games
Suppose we have a 2p-zs game given by a
(m1 ×m2)-matrix, A.

Suppose Player 1 chooses a mixed strategy x1, and
Player 2 chooses mixed strategy x2 (assume x1 and
x2 are given by column vectors). Consider the
product

xT
1Ax2

If you do the calculation,

xT
1Ax2 =

m1∑
i=1

m2∑
j=1

(x1(i) ∗ x2(j)) ∗ ai,j

But note that (x1(i) ∗ x2(j)) is precisely the
probability of the pure combination s = (i, j). Thus,
for the mixed profile x = (x1, x2)

xT
1Ax2 = U1(x) = −U2(x)

where U1(x) is the expected payoff (which Player
1 is trying to maximize, and Player 2 is trying to
minimize).
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“minmaximizing” strategies
Suppose Player 1 chooses a mixed strategy x∗1 ∈ X1,
by trying to maximize the “worst that can happen”.
The worst that can happen would be for Player 2 to
choose x2 which minimizes (x∗1)TAx2.

Definition: x∗1 ∈ X1 is a minmaximizer for Player
1 if

min
x2∈X2

(x∗1)TAx2 = max
x1∈X1

min
x2∈X2

(x1)TAx2

Similarly, x∗2 ∈ X2 is a maxminimizer for Player 2 if

max
x1∈X1

(x1)TAx∗2 = min
x2∈X2

max
x1∈X1

xT
1Ax2

Note that

min
x2∈X2

(x∗1)TAx2 ≤ (x∗1)TAx∗2 ≤ max
x1∈X1

xT
1Ax

∗
2

Amazingly, von Neumann (1928) showed equality
holds!
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The Minimax Theorem
Theorem(von Neumann) Let a 2p-zs game Γ be
given by an (m1 × m2)-matrix A of real numbers.
There exists a unique value v∗ ∈ R, such that there
exists x∗ = (x∗1, x

∗
2) ∈ X such that

1. ((x∗1)TA)j ≥ v∗, for j = 1, . . . ,m2.

2. (Ax∗2)j ≤ v∗, for j = 1, . . . ,m1.

3. And (thus) v∗ = (x∗1)TAx∗2 and

max
x1∈X1

min
x2∈X2

(x1)TAx2 = v∗ = min
x2∈X2

max
x1∈X1

xT
1Ax2

4. In fact, the above conditions all hold precisely
when x∗ = (x∗1, x

∗
2) is any Nash Equilibrium.

Equivalently, they hold precisely when x∗1 is any
minmaximizer and x∗2 is any maxminimizer.
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some remarks
Note:

(1.) says x∗1 guarantees Player 1 at least expected
profit v∗, and
(2.) says x∗2 guarantees Player 2 at most expected
“loss” v∗.

We call any such x∗ = (x∗1, x
∗
2) a minimax profile.

We call the unique v∗ the minimax value of game
Γ.

It is obvious that the maximum profit that Player 1
can guarantee for itself should be ≤ the minimum
loss that Player 2 can guarantee for itself, i.e., that

max
x1∈X1

min
x2∈X2

(x1)TAx2 ≤ min
x2∈X2

max
x1∈X1

xT
1Ax2

What is not obvious at all is why these two values
should be the same!
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Proof of the Minimax Theorem
The Minimax Theorem follows directly from Nash’s
Theorem (but historically, it predates Nash).

Proof: Let x∗ = (x∗1, x
∗
2) ∈ X be a NE of the

2-player zero-sum game Γ, with matrix A.

Let v∗ := (x∗1)TAx∗2 = U1(x∗) = −U2(x∗).

Since x∗1 and x∗2 are “best responses” to each other,
we know that for i ∈ {1, 2}

Ui(x∗−i;πi,j) ≤ Ui(x∗)

But

1. U1(x∗−1;π1,j) = (Ax∗2)j. Thus,

(Ax∗2)j ≤ v∗ = U1(x∗)

for all j = 1, . . . ,m1.

2. U2(x∗−2;π2,j) = −((x∗1)TA)j. Thus,

((x∗1)TA)j ≥ v∗ = −U2(x∗)

for all j = 1, . . . ,m2.
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3. maxx1∈X1(x1)TAx∗2 ≤ v∗ because (x1)TAx∗2 is a
“weighted average” of (Ax∗2)j’s.

Similarly, v∗ ≤ minx2∈X2(x
∗
1)TAx2 because

(x∗1)TAx2 is a “weighted average” of ((x∗1)TA)j’s.
Thus

max
x1∈X1

(x1)TAx∗2 ≤ v∗ ≤ min
x2∈X2

(x∗1)TAx2

We earlier noted the opposite inequalities, so,

min
x2∈X2

max
x1∈X1

xT
1Ax2 = v∗ = max

x1∈X1

min
x2∈X2

(x1)TAx2

4. We didn’t assume anything about the particular
Nash Equilibrium we chose. So, for every NE, x∗,
letting v′ = (x∗1)TAx∗2,

max
x1∈X1

min
x2∈X2

(x1)TAx2 = v′ = v∗ = min
x2∈X2

max
x1∈X1

xT
1Ax2

Moreover, if x∗ = (x∗1, x
∗
2) satisfies conditions (1)

and (2) for some v∗, then x∗ must be a Nash
Equilibrium.

Q.E.D. (Minimax Theorem)
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remarks and food for thought

• Thus, for 2-player zero-sum games, Nash
Equilibria and Minimax profiles are the same thing.

• Let us note here
Useful Corollary for Minimax: In a minimax
profile x∗ = (x∗1, x

∗
2),

1. if x∗2(j) > 0 then ((x∗1)TA)j = (x∗1)TAx∗2 = v∗.
2. if x∗1(j) > 0 then (Ax∗2)j = (x∗1)TAx∗2 = v∗.

This is an immediate consequence of the Useful
Corollary for Nash Equilibria.

• If you were playing a 2-player zero-sum game (say,
as player 1) would you always play a minmaximizer
strategy?

• What if you were convinced your opponent is an
idiot?

• Notice, we have no clue yet how to compute the
minimax value and a minimax profile.

That is about to change.

Kousha Etessami AGTA: Lecture 4



12

minimax as an optimization
problem

Consider the following “optimization problem”:

Maximize v

Subject to constraints:

(xT
1A)j ≥ v for j = 1, . . . ,m2,

x1(1) + . . .+ x1(m1) = 1,

x1(j) ≥ 0 for j = 1, . . . ,m1

It follows from the minimax theorem that an optimal
solution (x∗1, v

∗) would give precisely the minimax
value v∗, and a minmaximizer x∗1 for Player 1.

We are optimizing a “linear objective”,
under “linear constraints” (or “linear inequalities”).

That’s what Linear Programming is.

Fortunately, we have good algorithms for it.

Next time, we start Linear Programming.
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