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2-person zero-sum games

A finite 2-person zero-sum (2p-zs) strategic game I,
is a strategic game where:

e For players i € {1,2}, the payoff functions
u; : S +— R are such that for all s = (s1,82) € S,

u1(s) + uz(s) =0
le.,  wui(s) = —us(s).

u;(s1, S2) can conveniently be viewed as a my x mo
payoff matrix A;, where:

ul(l, 1) ...... Ul(l, mg)
Al =
| ui(my, 1) .. u1(my, ma)
Note, Ay = —A;. Thus we may assume only one

function u(s1,s2) is given, as one matrix, A = Aj;.
Player 1 wants to maximize u(s), while Player 2
wants to minimize it (i.e., to maximize its negative).
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matrices and vectors

As just noted, a 2p-zs game can be described by an
mi X Mo matrix:

where a; ; = u(t, ).

For any (n1 x ng)-matrix A we'll either use a; ; or
(A); ; to denote the entry in the ¢'th row and j'th
column of A.

For (n1 X ng) matrices A and B, let

A>DB
denote that for all 4, j, a; ; > b; ;.
Let

A>DB

denote that for all 4,5, a; ; > b; ;.

For a matrix A, let A > 0 denote that every entry is
> 0. Likewise, let A > 0 mean every entry is > 0.
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more review of matrices and
vectors

Recall matrix multiplication: given (n; X ns)-matrix
A and (ng X ng)-matrix B, the product AB is an
(n1 X ng)-matrix C', where

ng
Cij = E ik * b
k=1

Fact: matrix multiplication is “associative”: i.e.,

(AB)C = A(BC)

(Note: for the multiplications to be defined, the
dimensions of the matrices A, B, and C need to be
“consistent”: (n1 X n3), (N2 X ng), and (n3g X ng),
respectively.)

Fact: For matrices A, B, C, of appropriate
dimensions, if A > B, and C > 0, then
AC > BC, and likewise, CA > CB.

(C's dimensions might be different in each case.)
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more on matrices and vectors

For a (n1 X no) matrix B, let B! denote the (nyxn1)
transpose matrix, where (B?); ; := (B),.;.

I y(1) ]

We can view a column vector, y = : S as a

L y(m) |
(m x 1)-matrix. Then, y1 would be a (1 xm)-matrix,
I.e., @ row vector.

Typically, we think of “vectors” as column vectors
and explicitly transpose them if we need to. We'll
call a length m vector an m-vector.

Multiplying a (n1 X ng)-matrix A by a no-vector y is
just a special case of matrix multiplication:
Ay is a ni-vector.

Likewise, pre-multiplying A, by a ni-row vector y*,
is also just a special case of matrix multiplication:
yT' A is a ny-row vector.

For a column (row) vector y, we use (y), to denote
the entry (y);.1 (respectively, (y)1 ;).
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A matrix view of zero-sum games

Suppose we have a 2p-zs game given by a
(m1 X mg)-matrix, A.

Suppose Player 1 chooses a mixed strategy 1, and
Player 2 chooses mixed strategy x> (assume z; and
ro are given by column vectors). Consider the
product

33,{145172

If you do the calculation,

mi m2

Qj,{Aﬂfg E E z1(2) * x2(J)) * a; ;

1=1 7=1

But note that (x1(7) % x2(j)) is precisely the
probability of the pure combination s = (4, 7). Thus,
for the mixed profile x = (21, x2)

AZIZ’Q Ul( ) —UQ(ZIZ’)

where Ui(z) is the expected payoff (which Player
1 is trying to maximize, and Player 2 is trying to
minimize).
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“minmaximizing’ strategies

Suppose Player 1 chooses a mixed strategy x7 € X7,
by trying to maximize the “worst that can happen”.
The worst that can happen would be for Player 2 to
choose x5 which minimizes (x})1 Az.

Definition: z] € X; is a minmaximizer for Player
1if

min (2})" Az = max min (z1)? Az,
T2E€ X2 r1€X]1 226Xy

Similarly, 3 € X5 is a maxminimizer for Player 2 if

max (z1) Azs = min max z{ Az,
r1€Xq ro€EX9 x1€X7

Note that

min (z3)? Azy < (27)! Az < max x Az}
o€ Xo r1€Xq

Amazingly, von Neumann (1928) showed equality
holds!
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The Minimax Theorem

Theorem(von Neumann) Let a 2p-zs game I' be
given by an (mj X mo)-matrix A of real numbers.
There exists a unique value v* € R, such that there
exists * = (x7,z3) € X such that

L ()T A); >v*, forj=1,...,ma.
2. (Az3); <v* forj=1,...,my.
3. And (thus) v* = (7)1 Ax% and

max min (z1)Y Azs = v* = min max z{ Az,
r1€X1 x90€ X9 ro€EXor1€X]

4. In fact, the above conditions all hold precisely
when x* = (z7,23) is any Nash Equilibrium.

Equivalently, they hold precisely when z7 is any
minmaximizer and x5 is any maxminimizer.
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some remarks
Note:

(1.) says a7 guarantees Player 1 at least expected
profit v*, and

(2.) says x5 guarantees Player 2 at most expected
“loss” v*.

We call any such z* = (x3, x5) a minimax profile.

We call the unique v* the minimax value of game
I

It is obvious that the maximum profit that Player 1
can guarantee for itself should be < the minimum
loss that Player 2 can guarantee for itself, i.e., that

max min (2;)" Azy < min max zi Az,
r1E€X1 x9€ X9 roEX9 x1EX1

What is not obvious at all is why these two values
should be the samel
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Proof of the Minimax Theorem

The Minimax Theorem follows directly from Nash's
Theorem (but historically, it predates Nash).

Proof: Let z* = (z],23) € X be a NE of the
2-player zero-sum game I', with matrix A.

Let v* := (7)) Az} = Uy (z*) = —Us(x™).

Since z] and x5 are “best responses”’ to each other,
we know that for i € {1,2}

But
1. Ui(a* ;71 5) = (Axs);. Thus,
(Az3); <v* = U(z")
forall j=1,...,mq.
2. Us(z* 5;5ma,) = —((x3)T A);. Thus,
((z1)"A); = v* = ~Us(a”)

forall j =1,...,ms.
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3. maxy, ex, (r1)? Azl < v* because (z1)? Az is a
“weighted average” of (Az3);'s.

*

Similarly, v* < ming,ex,(z5)? Ars  because
(7)1 Ao is a “weighted average” of ((z3)1 A);'s.
Thus

T * * . AVA
Azl <v* < A
xrlnea%cl(xl) ry < v* < xgrél)%(a:l) T

We earlier noted the opposite inequalities, so,

min max 21 Az = v* = max min (z1)? Axs
ro€EXo x1€X1 r1E€X1 x0€ X9

4. We didn't assume anything about the particular
Nash Equilibrium we chose. So, for every NE, x*,
letting v/ = (x7)1 Ax3,

. / .
max min (z1)? Azy = v = v* = min max x| Az,
r1€X1 x2€X2 r2€ X2 1€X1

Moreover, if £* = (x7, x3) satisfies conditions (1)
and (2) for some v*, then x* must be a Nash
Equilibrium.

Q.E.D. (Minimax Theorem)
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remarks and food for thought

e Thus, for 2-player zero-sum games, Nash
Equilibria and Minimax profiles are the same thing.

e |et us note here
Useful Corollary for Minimax: In a minimax
profile * = (x7, x3),

1. if z3(5) > Othen ((x))T A); = (27) Azl = v*.
2. if z%(j5) > 0 then (Az}); = (7)1 Azl = v*.
This is an immediate consequence of the Useful
Corollary for Nash Equilibria.

e |f you were playing a 2-player zero-sum game (say,
as player 1) would you always play a minmaximizer
strategy?

e What if you were convinced your opponent is an
idiot?

e Notice, we have no clue yet how to compute the
minimax value and a minimax profile.

That is about to change.
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minimax as an optimization
problem

Consider the following “optimization problem":

Maximize v
Subject to constraints:
(x1 A); >vforj=1,...,maq,
(1) +...+xz1(my) =1,
z1(j) >0forj=1,...,m
It follows from the minimax theorem that an optimal

solution (x7,v*) would give precisely the minimax
value v*, and a minmaximizer x7 for Player 1.

We are optimizing a “linear objective”,
under “linear constraints” (or “linear inequalities™).

That's what Linear Programming is.

Fortunately, we have good algorithms for it.

Next time, we start Linear Programming.
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