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The Brouwer Fixed Point Theorem

We will use the following to prove Nash's Theorem.

Theorem(Brouwer, 1909) Every continuous function
f : D — D mapping a compact and convex, nonempty subset
D C R™ to itself has a “fixed point”, i.e., there is x* € D such
that f(x*) = x*.
Explanation:
» A “continuous” function is intuitively one whose graph has
no “jumps’.
» For our current purposes, we don't need to know exactly
what “compact and convex’ means.
(See the appendix of this lecture for definitions.)
We only state the following fact:

Fact The set of profiles X = X; x ... x X, is a compact and
convex subset of R™, where m = ¥£7_, m;, with m; = |S;].



Simple cases of Brouwer's Theorem

To see a simple example of what Brouwer’s theorem says,
consider the interval [0,1] = {x | 0 < x < 1}.

[0, 1] is compact and convex. ( [0, 1]" is also compact &
convex.)

For a continuous f : [0, 1] — [0, 1], you can "visualize” why the
theorem is true. Here's the “visual proof” in the 1-dimensional
case: 1
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For f : [0,1]> — [0, 1], the theorem is already far less obvious:
“the crumpled sheet experiment”.




brief remarks

» Brouwer's Theorem is a deep and important result in
topology.

» It is not very easy to prove, and we won't prove it.

» If you are desperate to see a proof, there are many. See,
e.g., any of these:
» [Milnor'66] (Differential Topology). (uses, e.g., Sard's
Theorem).
» [Scarf'67 & '73, Kuhn'68, Border'89], uses Sperner’s
Lemma.
» [Rotman’88] (Algebraic Topology). (uses homology, etc.)

» [D. Gale'79], possibly my favorite proof: uses the fact
that the game of (n-dimensional) HEX is a finite
“win-lose” game.



proof of Nash's theorem

Proof: (Nash's 1951 proof)
We will define a continuous function f : X — X, where
X = X1 x ... x X,, and we will show that if f(x*) = x* then

x* = (x{,...,x}) must be a Nash Equilibrium.

»'n

By Brouwer's Theorem, we will be done.

(In fact, it will turn out that x* is a Nash Equilibrium if and
only if f(x*) = x*.)

We start with a claim.



Claim: A profile x* = (x{,...,x}) € X is a Nash Equilibrium
if and only if, for every player i, and every pure strategy =; ,
j S 5,'1

Ui(x*) > Ui(xZ ;s mig).
Proof of claim: If x* is a NE then, it is obvious by definition
that U,'(X*) 2 U,'(Xi,-,ﬂ,',j).
For the other direction: by calculation it is easy to see that for
any mixed strategy x; € X;,

_,, [ ZX/(./ *U —I’ﬂ—’d)

By assumption, U;(x*) > ( _,,W,J) for all j.

So, clearly U;(x*) > U;(x*;; x;), for any x; € X;, because

Ui(x %) = 2270 xi(j) = ( Xt mig) < 200 xil) # Ui(x") =
U,'(X*).

Hence, each x* is a best response strategy to x*;. In other
words, x* is a Nash Equilibrium. ]



So, rephrasing our goal, we want to find

x* = (x{,...,x") such that

Ui(xZj mij) < Ui(x")

i.e., such that

Ui(x;imiy) — Ui(x*) <0

for all players i € N, and all j=1,... , m;.
For a mixed profile x = (x1, x2, ..., x,) € X: let

wij(x) = max{0, Ui(x_;; m;;) — Ui(x)}

Intuitively, ¢; ;(x) measures “how much better off” player
would be if he/she picked 7;; instead of x; (and everyone else
remained unchanged).



Define f : X — X as follows: For x = (x1, xa, . . .

f(x)=(x{, %5, ..., X))

where for all i/, and j =1,..., m;,

i XiU) + pii(x)
x(J) = L+ 00 wik(x)

Facts:

L. If x € X, then f(x) = (x{,...,x}) € X.

2. f: X — X is continuous.
(These facts are not hard to check.)

Thus, by Brouwer, there exists x* = (x;,x3, . ..

that f(x*) = x*.
Now we have to show x* is a NE.

,Xn) € X, let

,Xx5) € X such



For each i, and for j =1,..., m;,

X*( ) _ X:*(J) + (p;J(X*)
1+ 3200 ik(x)

thus, .
X)L+ eik(x) = x7() + @i(x7)
k=1
hence,

< 0)S o) = ()

We will show that in fact this implies ; ;(x*) must be equal to
0 for all j.



Claim: For any mixed profile x, for each player i, there is
some j such that x;(j) > 0 and ¢;;(x) = 0.
Proof of claim: For any x € X,

pij(x) = max{0, Ui(x_;; m; ;) — Ui(x)}

Since U;(x) is the "weighted average” of U;(x_;;m;;)'s, based
on the “weights” in x;, there must be some j used in x;, i.e.,
with x;(j) > 0, such that U;(x_;; ;) is no more than the
weighted average. l.e.,
Ui(x_is mij) < Ui(x)
le.,
U,'(X_,'; 71','7J') — U,'(X) S 0

Therefore,
i j(x) = max{0, Ui(x_;; mi;) — Ui(x)} = 0



Thus, for such a j, x/(j) > 0 and

Z@lk —0—90/,1( )

But, since ¢; x(x*)'s are all > 0, this means ¢; «(x*) = 0 for
all k =1,...,m;. Thus, for all players i, and for j =1,..., m;,

Ui(x") > Ui(xZ;: i)

Q.E.D. (Nash’s Theorem)

In fact, since Ui(x*) = >, x7(J) - Ui(x*;; mij) is the
“weighted average” of U;(x*;,7;;)’s, we see that:

Useful Corollary for Nash Equilibria:

Ui(x*) = Ui(x*;, ), whenever X,-*( i) > 0.

Rephrased: In a Nash Equilibrium x*, if x}(j) > 0 then
Ui(x*;;mij) = Ui(x*); i.e., each such m;j is itself a "best
response’ to x*;.

This is a subtle but very important point. It will be useful later
when we want to compute NE's.



Remarks

» The proof using Brouwer gives ostensibly no clue how to
compute a Nash Equilibrium. It just says it exists!

» We will come back to the question of computing Nash
Equilibria in general games later in the course.

» We start next time with a special case: 2-player zero-sum
games (e.g., of the Rock-Paper-Scissor’s variety). These
have an elegant theory (von Neumann 1928), predating
Nash.

» To compute solutions for 2p-zero-sum games, Linear
Programming will come into play.
Linear Programming is a very important tool in
algorithms and optimization. Its uses go FAR beyond
solving zero-sum games. So it will be a good opportunity
to learn about LP.




NE need not be "Pareto optimal”

Given a profile x € X in an n-player game, the “(purely
utilitarian) social welfare” is: U;(x) + Ua(x) + ... + Un(x).
A profile x € X is pareto efficient (a.k.a., pareto optimal)
if there is no other profile x’ such that U;(x) < U;(x’) for all
players i, and Ux(x) < Ux(x’) for some player k.



Note: The Prisoner's Dilemma game shows NE need not
optimize social welfare, nor be Pareto optimal.
Player II

Cooperate Defect

Cooperate

Defect

Indeed, there is a unique NE, (Defect, Defect), and it neither
optimizes social welfare nor is Pareto optimal, because
(Cooperate, Cooperate) gives a higher payoff to both players.



application in biology: evolution as a game

>

One way to view how we might “arrive” at a Nash
equilibrium is through a process of evolution.

John Maynard Smith (1972-3,'82) introduced game
theoretic ideas into evolutionary biology with the concept
of an Evolutionarily Stable Strategy.

Your extra reading (for fun) is from Straffin(1993) which
gives an amusing introduction to this.

Intuitively, a mixed strategy can be viewed as percentages
in a population that exhibit different behaviors
(strategies).

Their behaviors effect each other’s survival, and thus each
strategy has a certain survival value dependent on the
strategy of others.

The population is in “evolutionary equilibrium” if no
“mutant” strategy could invade it and “take over".



The Hawk-Dove Game

Player I1
Hawk Dove
-15 0
Hawk
50 25
Dove

Large population of same “species”’, each behaving as either
“hawk” or “dove”.

What proportions will behaviors eventually stabilize to (if at
all)?



Definition of ESS

Definition: A 2-player game is symmetric if S; = S,, and
for all 51,5 € Sy, u1(s1,52) = (52, 51)-

Definition: In a 2p-sym-game, mixed strategy xj is an
Evolutionarily Stable Strategy (ESS), if:
1. x{ is a best response to itself, i.e., x* = (x{,x7) is a
symmetric Nash Equilibrium, &

2. If x{ # x{ is another best response to x;, then
Ul(Xi’ X{) < Ul(va X{)

Nash (1951, p. 289) also proves that every symmetric game
has a symmetric NE, (xf, x;'). (However, not every symmetric
game has a ESS.)



A little justification of the definition of ESS

Suppose x; is an ESS. Consider the “fitness function”, F(xy),
for a “mutant” strategy x| that “invades’ (becoming a small
e > 0 fraction of) a current ESS population, x;. Then, Claim:

Fix) = (1=9Uilq,xq) +elh(x, x1) (1)
< (1=9Uild, q) +elh(x, x) = F(x*)  (2)

Proof: if x{ is a best response to the ESS x;, then

Ur(x1, x7) < Ui(x7,x7) and Us(x1, x1) < Ui(x{, x1), and since
we assume € > 0, the strict inequality in (2) follows. If on the
other hand x is not a best response to x;, then

Ur(x1, x7) < Ui(x{, x{), and for a small enough ¢ > 0, we have
(1 —e)(Ui(q, x7) — Us(x, x7)) > e(Uh(oq, xq) — Ua(xg, 7).
Thus again, the strict inequality in (2) follows. O
So, an ESS x; is “strictly fitter” than any other strategy, when
it is already dominant in the society. This is the sense in which
it is “evolutionarily stable”.



Does an ESS necessarily exist?

» As mentioned, Nash (1951) already proved that every
symmetric game has a symmetric NE (x*, x*).

» However, not every symmetric game has a ESS.
Example: Rock-paper-scissors:

(070) (17_1) (_171)
(_171) (O? O) (17—1)
(17—1) (_171) (070)
Obviously, s = (1/3,1/3,1/3) is the only NE. But it is
not an ESS: any strategy is a best reponse to s, including
the pure strategy s'. We have payoff
U(s,s) = 0= U(s},s), so s is not an ESS.
» But many games do have an ESS. For example, in the
Hawk-Dove game, (5/8,3/8) is an ESS.)
» Even when a game does have an ESS, it is not at all
obvious how to find one.



How hard is it to detect an ESS?

» It turns out that even deciding whether a 2-player
symmetric game has an ESS is hard. It is both NP-hard
and coNP-hard, and contained in Zf:

K. Etessami & A. Lochbihler, “The computational complexity
of Evolutionarily Stable Strategies”, International Journal of
Game Theory, vol. 31(1), pp. 93-113, 2008.

(And, more recently, it has been shown ¥5-complete, see:
V. Conitzer, “The exact computational complexity of
Evolutionary Stable Strategies”, in Proceeding of Web and
Internet Economics (WINE), pages 96-108, 2013. )

» For simple 2 x 2 2-player symmetric games, there is a
simple way to detect whether there is an ESS, and if so to
compute one (described in the reading from Straffin).

» There is a huge literature on ESS and “Evolutionary
Game Theory”. See, e.g., the book: J. Weibull,
Evolutionary Game Theory, 1997.



Appendix: continuity, compactness, convexity

Definition For x,y € R", dist(x,y) = /> (x(7) — y(i))?
denotes the Euclidean distance between points x and y.

A function f : D C R" — R" is continuous at a point x € D if
for all € > 0, there exists 6 > 0, such that for all y € D: if
dist(x,y) < d then dist(f(x),f(y)) <e.

f is called continuous if it is continuous at every point x € D.
Definition A set K C R" is convex if for all x,y € K and all
Ae[0,1], Ax+(1—-XN)y e K.

Fact A set K C R" is compact if and only if it is closed and
bounded. (So, we need to define “closed” and “bounded”.)
Definition A set K C R" is bounded iff there is some
non-negative integer M, such that K C [-M, M]".

(i.e., K "fits inside” a finite n-dimensional box.)

Definition A set K C R" is closed iff for all sequences

X0, X1, X2, . .., where x; € K for all i, such that x = lim;_,, x; for
some x € R", then x € K. (In other words, if a sequence of points
is in K then its limit (if it exists) must also be in K.)




