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games and the internet

I Basic idea: “The internet is a huge experiment in
interaction between agents (both human and
automated)”.

I Such interactions can profitably be viewed from a game
theoretic viewpoint: agents trying to maximize their own
payoffs, etc.

I What are the implications of selfish behavior?

I How do we set up the rules of these games to harness
“socially optimal” results?



(Selfish) Network Routing as a Game
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Figure: “The Internet”
� Selfish agent i = 1, 2, 3, wants to route packets from Si to
Ti . So agent i must choose a directed path from Si to Ti .
� The delay on each edge of the path is governed by the
congestion of that edge, i.e., the total number of agents
using that edge in their path.
� Agents can change their choice to decrease their delay.
� What is a Nash Equilibrium in this game? What are the
welfare properties of such an NE? (Is it socially optimal? If
not, how bad can it be?)



Congestion Games ([Rosenthal,1973])

A Congestion Game, G = (N ,R , (Zi)i∈N , (dr )r∈R) has:
� A finite set N = {1, . . . , n} of players.
� A finite set of R = {1, . . . ,m} of resources.
� For each player, i , a set Zi ⊆ 2R , of admissible strategies
for player i . So a pure strategy, si ∈ Zi is a set of resources.
� Each resource r ∈ R has a cost function: dr : N→ Z.
Intuitively, dr (j) is the cost of using resource r if there are j
agents simultaneously using r .
� For a pure strategy profile s = (s1, . . . , sn) ∈ Z1 × . . .Zn,
the congestion on resource r is: nr (s)

.
= |{i | r ∈ si}|.

� Under strategy profile s = (s1, . . . , sn), the total cost to
player i is:

Ci(s)
.

=
∑
r∈si

dr (nr (s))

� Every player, i , wants to minimize its own (expected) cost.



Best response dynamics, and pure Nash Equilibria

In a congestion game G , for any pure strategy profile
s = (s1, . . . , sn), suppose that some player i has a better
alternative strategy, s ′i ∈ Zi , such that Ci(s−i ; s

′
i ) < Ci(s).

Player i can switch (unilaterally) from si to s ′i . This takes us
from profile s to profile (s−i , s

′
i ).

We call this a single (strict) improvement step.

Starting at an arbitrary pure strategy profile s, what happens
if the players perform a sequence of such improvement steps?

Theorem: ([Rosenthal’73]) In any congestion game, every
sequence of strict improvement steps is necessarily finite, and
terminates in a pure Nash Equilibrium.
Thus, in particular, every congestion game has a pure strategy
Nash Equilibrium.



Proof: Potential functions
Proof: Consider the following potential function:

ϕ(s)
.

=
∑
r∈R

nr (s)∑
i=1

dr (i) (1)

What happens to the value of ϕ(s) if player i switches
unilaterally from si to s ′i , taking profile s to s ′ := (s−i ; s

′
i )?

Claim: ϕ(s)− ϕ(s ′) = Ci(s)− Ci(s
′).

Proof: Re-order the players in any arbitrary way, and index
them as players 1, 2, . . . , n. (In particular, any player formerly
indexed i could be re-indexed as n.) For i ′ ∈ {1, . . . , n}, define

n(i
′)

r (s) = |{i | r ∈ si ∧ i ∈ {1, . . . , i ′}}|
By exchanging the order of summation in equation (1) for
ϕ(s), it can be seen that (check this yourself):

ϕ(s) =
n∑

i=1

∑
r∈si

dr (n
(i)
r (s))



proof of claim, continued

Now note that n
(n)
r (s) = nr (s). Thus∑

r∈sn

dr (n
(n)
r (s)) =

∑
r∈sn

dr (nr (s)) = Cn(s)

So, if player n switches from strategy sn to s ′n, leading us from
profile s to s ′ = (s−n; s ′n), then:
ϕ(s)− ϕ(s ′) = Cn(s)− Cn(s ′).
But note that when re-ordering we could have chosen player n
to be any player we want! So this holds for every player i . 2



Proof of Theorem, continued

To complete the proof of Rosenthal’s Theorem: Observe that
every strict improvement step must decreases the value of the
potential function ϕ(s) by at least 1 (the costs dr (s) are all
integers). Furthermore, there are only finitely many pure
strategies s, so there are finite integers:
a = mins ϕ(s) and b = maxs ϕ(s). Thus, every improvement
sequence is finite.

Finally, note that the last profile s in any improvement
sequence which can not be further improved is, by definition, a
pure Nash equilibrium.2



Complexity of pure NE in network conges. games
Consider a network congestion game where we are given a
network with source-sink node pairs (Si ,Ti), for each player i ,
and each player must to choose a route (path) from Si to Ti .
Suppose the cost (delay) of an edge, e, under profile s, is
defined to be some linear function: de(ne(s)) = αene(s) + βe .

One obvious way to compute a pure NE is to perform an
arbitrary improvement sequence. However, this may
conceivably require many improvement steps.
Is there a better algorithm?
It turns out that it is as hard as any polynomial local search
problem to compute a pure NE for network congestion games:
Theorem: [Fabrikant et.al.’04, Ackermann et.al.’06].
Computing a pure NE for a network congestion game is
PLS-complete, even when all edge delay functions, de , are
linear.
So, unfortunately, a P-time algorithm is unlikely.



A flow network game
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x
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(from [Roughgarden-Tardos’00])
� n customers in network: each wants to go from s to t.
� Each can either take the edge with “latency” 1 (delay of
crossing the edge), or edge with latency x . Here x represents
the “congestion”: the ratio of the number of customers that
are using that edge divided by the total n.
� Assume n is very large, (basically, n→∞). What is the
delay in Nash Equilibrium? (NEs in such a setting yield
essentially a unique average delay [Beckmann, et. al. ’56].)
� What is a “globally optimal” customer routing strategy
profile that minimizes average delay?
What is the globally optimal average delay?



a modified game

s t

1

x
d

I What is the NE, and what is the average delay it induces?

I What is the globally optimal average delay?



a different network
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I What is the NE, and what is its average delay?

I What is a globally optimal strategy profile and optimal
average delay?

I What if an ambitious “network service provider” wanted
to build an additional “high capacity superfast
broadband” line?



Braess’s paradox
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I What is the NE and its average delay?

I What is the globally optimal average delay?



social welfare and the price of anarchy
Recall that in a strategic game Γ, “utilitarian social welfare”,
welfare(x), under a particular profile of mixed strategies
x ∈ X , is defined as welfare(x) :=

∑n
i=1 Ui(x). For a game Γ,

let NE (Γ) be the set of NE’s of Γ.
For our next definition suppose welfare(x) > 0 for all x ∈ X .
(In many games, we can enforce this by, e.g., adding a fixed
value to all payoffs.)
A version of “the price of anarchy” can be defined as:
([Koutsoupias-Papadimitriou’98])

PA(Γ) :=
maxx∈X welfare(x)

min
x∈NE(Γ) welfare(x)

Thus, the “price of anarchy” is the ratio of best “global”
outcome to the the worst NE outcome. Note: this ratio is ≥ 1
and larger means “worse”.
It would be comforting to establish that in various situations
the “price of anarchy” isn’t too high.



Pure price of anarchy

In some settings, such as congestion games, where we know
that a pure equilibrium exists, it is sometimes more sensible to
compare the best overall outcome to the worst pure-NE
outcome.
Let pure-NE (Γ) denote the set of pure NEs in the game Γ. For
settings (such as congestion games) where we know
pure-NE (Γ) is non-empty, we define
“the pure price of anarchy” as:

pure-PA(Γ) :=
maxs∈S welfare(s)

min
s∈pure-NE(Γ) welfare(s)

Thus, the “pure price of anarchy” is the ratio of best (pure)
“global” outcome to the the worst pure NE outcome.



price of anarchy in the flow network game

I For flow f let welfare(f ) := 1/(average s-t-delay).

I In Braess’s paradox, the price of anarchy is 4/3: by
playing the NE the average delay is 2, but playing
half-and-half on the upper and lower route, the average
delay is 3/2 (and that’s optimal).

I We have seen that the price of anarchy in network games
can be arbitrarily high, when xd is an edge label.

I Remarkably, [Roughgarden-Tardos’00] showed that in a
more general flow network setting (where there can be
multiple source-destination pairs (sj , tj)), as long as
“congestions” labeling edges are linear functions of x , the
worst-case price of anarchy is 4/3.

I In other words, for linear latencies, the Braess’s paradox
example yields the worst-case scenario.



Back to atomic network congestion games

By an “atomic” network congestion game, we simply mean a
standard network congestion game with a finite number of
players, where each aims to minimize its own cost. (Whereas
in non-atomic network flow games the average cost in
equilibrium is uniquely determined, this is not the case with
atomic network congestion games.)
What is the (pure) price of anarchy in atomic network
congestion games?

Theorem: [Christodoulou-Koutsoupias’2005]. The pure price
of anarchy for a pure NE in atomic network congestion games
with linear utilities is

5/2

(And this is tight, just like 4/3 for non-atomic network
congestion games.)


