
Algorithmic Game Theory and

Applications

Lecture 13:

Parity Games and

Mean-Payoff Games

Kousha Etessami

Kousha Etessami AGTA: Lecture 13



1

What are Parity Games?

Parity games are a class of h.o. win-lose games on a
graph:

G = (V0, V1, E, λ)

• players: P0 (Even) and P1 (Odd)
• game graph: (V,E), where V = V0 ∪ V1

• priority function: λ: V →N

value λ(v) is called a priority of vertex v

• Notation: # ∈ V0,2 ∈ V1

4 3 2 1 2 3

What is the winning condition?

• play: π: v1v2 . . .

• λ(π) = λ(v1)λ(v2) . . .

• The top priority of a play:
Top(π) = max{p|p appears infinitely often in λ(π)}

• a play π is winning for player P0 if Top(π) is
even, and for player P1 if Top(π) is odd.

In other words, player P0 (P1) wins play π if the
highest priority appearing infinitely often in λ(π) is
even (odd).

Kousha Etessami AGTA: Lecture 13



2

Why are parity games interesting?

• Every h.o. win-lose game (i.e., every Muller game)
can be converted to an “equivalent” parity game.

This can be done by attaching some data called
a Latest Appearance Record to the current state
(keeping track of some things about the history
of the play so far).

However the translation will cause worst-case
exponential blow-up in the size of the game graph.

• Several important problems in automated
verification (model checking) boil down to solving
a parity game. (µ-calculus Model checking.)

• Special complexity-theoretic status:
deciding which player has a winning strategy is
known to be in NP ∩ co-NP, but not known to
be in polynomial time.

Kousha Etessami AGTA: Lecture 13



3

More on parity games

• infinite duration games on graphs
• win-lose games of perfect information
• history oblivious, but not finitistic.
• but still, as we shall see, memorylessly

determined.

For a parity game graph G, we let Gv denote the
corresponding parity game that starts in state v.

We want to decide which player has a winning
strategy, in Gv. (And to compute such a winning
strategy.)

These win-lose games are determined (i.e., one player
or the other has a winning strategy), because they
can easily be seen to be particular examples of
Borel games.

Kousha Etessami AGTA: Lecture 13



4

Memoryless determinacy

Main Theorem Parity games are memorylessly
determined.

This will give us a simple exponential-time algorithm
to solve parity games: for every memoryless strategy
σ of P0, try it against every memoryless strategy τ

of player 1, and see if it beats each such strategy.

Proof. There are several different proofs of this
theorem. The following is based on [Ehrenfeucht,
Mycielski’73].

Finite duration parity game (FPG), G̃v is defined
and played as a normal PG, Gv, except that the play
stops once some vertex w is revisited. The winner
depends on the maximum priority p on the loop from
w to w. If p is even, P0 wins, otherwise P1 wins.

(FPG determinacy) The FPG game G̃v is determined
(i.e., one player or the other has a winning strategy).

Follows easily from the Zermelo’s theorem: every
finite zero-sum game of perfect information is
determined.

Kousha Etessami AGTA: Lecture 13



5

Finite duration parity game with special node z

(FPGz): Given Gv, and another vertex z, the game
G̃v,z, with “special” vertex z, is just like the FPG
game except that the first time vertex z is visited,
the “history is erased”.

The winner depends again on the maximum priority
p on the first “loop” created, but now if z is visited
then this “loop” might be arrived at “later”, because
we ignore the history before z was visited.

Clearly, game G̃v,z is also a finite zero-sum game,
and thus determined, meaning one player or the other
has a winning strategy.

Furthermore, if z belongs to Pi, then clearly any
optimal strategy for Pi is memoryless from the vertex
z, because the vertex is only encountered at most
ONCE, and “history” is ignored if it is encountered.

Theorem The PG game Gv, its FPG versions G̃v,
and its FPGz version G̃v,z, all have the same “value”
(i.e., the same player has a winning strategy), for all
vertices v and z.

Furthermore, in all these games both players have
optimal memoryless strategies.

Kousha Etessami AGTA: Lecture 13



6

Proof of memoryless determinacy

First, suppose that a strategy σ̃ is winning for player
P0 in the game G̃v. From this, we construct a
strategy σ that is winning for P0 in Gv as follows:
In σ, play just like in σ̃ until a loop Lk is created.
Then, erase the loop from the history, and continue
playing according to σ̃ from the last visited state of
the loop (but without the loop as part of history).

”Set aside the loop, Lk, let k := k + 1.

Since σ̃ is winning in G̃v it means that every
created “loop” L1, L2, . . . will have top priority even.
Therefore, for the entire infinite play in Gv the top
priority occuring infinitely often is also even.
(Because, the top priority occuring infinitely often
must have the top priority in infinitely many such
loops Lk.)

There was nothing special about player P0. We could
have done the same arguement for player P1.

Therefore, the same player has a winning strategy in
Gv and in G̃v.

Kousha Etessami AGTA: Lecture 13



7

Next (Key Point), we claim that the same player
has a winning strategy in Gv and G̃v,z, for any z.

The reasoning is entirely the same: let σ̃ be a winning
strategy for player P0 in G̃v,z, then we construct from
it a winning strategy σ for P0 in Gv by erasing loops
from the “history”, except that we treat the first
occurence of z as erasing all history (not just the
loop history).

But note: Pi playing out of z has a optimal
memoryless move out of z in G̃v,z. In other words,

we can rephrase G̃v,z, as the new game G′

v where we
fix the edge out of z to be an optimal memoryless
edge.

We have thus created a new game, G′

v, with one
fewer vertex for player Pi which has more than one
outedge, and which has the same value as the game
G̃v,z (and thus Gv), and moreover, such that an
optimal strategy in G′

v yields an optimal strategy in
Gv.

Now, by induction, we can find a game G′, which
has no vertex of Pi with more than one outedge, and
the (optimal) memoryless strategy for Pi in G′ yields
an optimal memoryless strategy for Pi in Gv.

Kousha Etessami AGTA: Lecture 13



8

Solving 1-player parity games in P-time

Fact Let G be a 1-player parity game (no vertices V1

belonging to P1). Then P0 has a winning strategy
starting at a vertex v in G iff there is a cycle reachable
from v in which the top priority is even.

Proof: easy: if such a cycle exists, P0 can force it
and win. If not, P0 can’t win with any memoryless
strategy (any such strategy creates one cycle).

Deciding who has a winning strategy in a 1-player
parity game can be solved efficiently in P-time.

We need to check whether there is a cycle with top
priority even reachable from v:

Repeat

1. If the current top priority p′ labeling any node is
odd, eliminate nodes labeled p′ the graph.

2. otherwise (top priority p is even), check if ∃ node
u labeled p reachable from start v, such that u is
on a cycle.
If so, HALT: OUTPUT “P0 has a winning strat.”.
If not, eliminate nodes labeled p from the graph.

Until (no nodes remain)
HALT: “P0 does not have a winning strat.”.

Kousha Etessami AGTA: Lecture 13



9

Implications for complexity of 2-player

Parity Games

Now, since we know that we can solve 1-player parity
games efficiently, in polynomial time, then to solve
a 2-player parity game we can use the following
approach:

1. “Nondeterministically guess” a memoryless
optimal strategy σ′ for one of the two players
(say, for player P1).

2. Check if in the remaining 1-player parity game
player P0 has a winning stretegy. If not, then
(since the game is determined), that means σ′ is
a winning stretegy for player P1.

Of course, we could have done the same with the
roles of P0 and P1 reversed.

But how do we “nondeterminstically guess” a
memoryless strategy?? There are exponentially many
(2m) such strategies for player P0 (exponential in the
number m of nodes controlled by player P0), even if
we only have 2 choices at each node.

Kousha Etessami AGTA: Lecture 13



10

We can’t do this deterministically in polynomial time,
but we can do it in Nondeterministic polynomial
time, and that is what the complexity class NP.
(And coNP is the class of decision problems whose
complement is in NP.)

Since we can do this for either player, this shows
that the problem of deciding whether a player, say
P0, has a winning strategy in a given parity game is
in the complexity class NP ∩ coNP.

(N.B. We will later learn that this problem is actually
also reducible to computing a Nash equilibrium in a
2-player normal form game.)

Kousha Etessami AGTA: Lecture 13



11

Mean-Payoff Games

Every parity game can be reduced to a
mean payoff game.

II; 13

I ;7

II; −7

II; 11

II; 5

I ; −4

Zero-sum game.

Two players: I (Max) and II (Min)

Payoff (utility) function: u : V 7→ N for player I.

Node v ∈ V has payoff u(v) ∈ N for player I (Max).

Kousha Etessami AGTA: Lecture 13



12

Player I wants to maximize the following
limiting average (mean) payoff

in an infinite play π = v1v2v3 . . .:

Maximize: lim inf
n→∞

∑n

i=1
u(vi)

n

Thm: Mean-payoff games are memoryless
determined (i.e., both players have deterministic
memoryless strategies that achieve the value of the
game.)

Proof: Basically the same proof as for parity games
works.

The only modification needed is that in “Finite Mean-
Payoff Games”, we calculate the mean payoff of the
finite play to be the average payoff of those nodes
on the single loop that was created when the game
finished.

In the finite mean-payoff game with a special node
z, we treat z in exactly the same way as before: it
“erases” history up to that point.

Everything then in the argument works: we can show
that whatever mean-payoff either player, Pi, can force

Kousha Etessami AGTA: Lecture 13



13

in the finite game can also be forced in the infinite
game. We do this by taking the average of the
infinitely many “optimal loops” that will be created
by the optimal strategy in the finite game when it is
translated to the infinite mean-payoff game in a way
analogous to the way we went from a strategy for
finite parity games to infinite parity game.

In fact, this proof was originally devised for mean
payoff games by Ehrenfeucht and Mycielski (1973).

For both parity games and mean-payoff games, we
do not know a worst-case efficient (polynomial time)
algorithm. But we know that the relevant decision
problems are in NP ∩ coNP.

(1-player Mean-payoff games can be solved in
polynomial time by an algorithm due to Karp (1978)
for finding the minimum mean-weight cycle value in
a directed graph.)

Kousha Etessami AGTA: Lecture 13


