
Algorithmic Game Theory

and Applications

Lecture 13:

Games on Graphs

Kousha Etessami

Kousha Etessami AGTA: Lecture 12

1

unbounded chess

Player II: Player I:

Start

checkmates! II wins!

checkmates! II wins!

king trapped! automatic draw

• Consider chess: the same exact “position” might
recur in the game, but the “game tree” does not
reflect this: no relationship between distinct nodes
of the tree in a PI-game is indicated.

• There are finitely many positions in the game
(≤ 6432). After a certain depth, every “play” of
the game contains a recurrence of a position.

• Consider “unbounded chess” without any artificial
stopping conditions: a game that goes on for ever
is by definition a draw.

Is this win-lose-draw game determined?
I.e., does Zermelo’s theorem still hold?

Kousha Etessami AGTA: Lecture 12

2

more serious motivation
• We can often model the dynamics of a

system (e.g., a running program) as a
state transition system or state machine.

• If the system interacts with an environment,
transitions out of some states can be viewed as
“controlled by the environment”.

• Can the environment force the system, with any
sequence of inputs, into a “error state”?

• Even for state machines without environments,
questions like: “can I reach the reset state from

all reachable states of the system?”, can be
formulated as a game on a graph.

• Such queries, and much more, can be formalized in
certain “temporal logics”. Temporal logics (TLs)
are formal languages for describing relationships
between the occurrence of events over time.

Efficiently checking such queries against a system
model (e.g., a state transition system) is the task
of “model checking”. Some key model checking
tasks are intimately related to efficiently solving
certain games on graphs.
(To learn more, e.g., attend my short TPG course
on “Automata-Theoretic Model Checking”.)

Kousha Etessami AGTA: Lecture 12

3

game graphs and their trees

A 2-player game graph, G = (V, E, pl) consists of:

• A (finite) set V of vertices.

• A set E ⊆ V × V of edges.

• A function pl : V 7→ {1, 2} mapping each vertex
to the player whose turn it is to play at that

vertex. Let V1 = pl−1(1), and V2 = pl−1(2).

A game graph G together with a start vertex v0 ∈ V ,
defines a game tree Tv0

given by:

1. Action alphabet Σ = V . Thus Tv0
⊆ V ∗.

2. ǫ ∈ Tv0
, and wv′′ ∈ Tv0

, for v′′ ∈ V , if and only if

• w = ǫ and (v0, v
′′) ∈ E, or

• w = w′v′, for some v′ ∈ V , and (v′, v′′) ∈ E.
• We extend the player map pl : V 7→ {1, 2} to a

map pl′ : Tv0
7→ {1, 2} as follows:

pl′(ǫ) := pl(v0), and pl′(wv′) := pl(v′).

It is easy to confirm that Tv0
is a game tree, where

Act(wv′) = {v′′ | (v′, v′′) ∈ E}, and it’s plays are
precisely all paths in the graph G starting from v0.

Kousha Etessami AGTA: Lecture 12

4

games on graphs

A game on a graph, Gv0
, is given by:

A finite game graph G,
a vertex v0 ∈ V ,
and a payoff function u : ΨTv0

7→ R,

These together define a 2-player zero-sum PI-game

with game tree Tv0
and player map pl′.

Note: We already know that even for win-lose payoff
functions u, games on finite graphs are not in general
determined, because the infinite binary tree {L, R}∗

is the game tree for the following game graph:

Player II: Player I:

L

R R

L

and we already know (lecture 11) that there are sets
Y of plays such that the win-lose game 〈{L, R}∗, Y 〉
is not determined.

So, let’s restrict the possible payoff functions.

Kousha Etessami AGTA: Lecture 12

5

“history oblivious” payoffs
• Suppose there is some vertex v′ of graph G that

is a “dead end”. E.g., in chess this could be a
vertex “checkmate for Player I”.

• There may be multiple ways to end up in vertex v′.
But we would like the winner to be the same for
any finite play wv′ ∈ V ∗. I.e., u(wv′) = u(w′v′),
for any finite plays wv′ and w′v′.
So, the payoff is “history oblivious”.

• What about for infinite plays π?
We can think of π as an infinite sequence
v0v1v2v3v4v5, where each vi ∈ V .
We use the notation π ∈ V ω.

• For π = v0v1 . . ., let
inf(π) = {v ∈ V | for ∞-many i ∈ N, vi = v}

• Let’s call payoff function u() history oblivious1

(h.o.), if for all infinite plays π and π′,
if inf(π) = inf(π′), then u(π) = u(π′)

and for all finite complete plays wv and w′v,
u(wv) = u(w′v).

Call a graph game h.o. if its payoffs are h.o.
We will only consider h.o. games (and often less).

1Technically, we are dispensing with more information here, beyond the

info. in finite histories, but never mind the ill-chosen name.

Kousha Etessami AGTA: Lecture 12

6

“finitistic” payoffs

• Note that in chess, if the play π is infinite, then
the play is always a draw, i.e., u(π) = 0.

• Let’s call an h.o. payoff function finitistic if for all
infinite plays π and π′, u(π) = u(π′).
Let’s call a game on a graph Gv0

finitistic if its
payoff function is.

So, in win-lose-draw finitistic games, infinite plays
are either all wins, all losses, or all draws, for
player 1.

Question: Are all finitistic games on graphs
determined?
Answer: Yes..............

In fact, more it true: for finitistic games there
is always a memoryless strategy for each player
that achieves the value of the game, and we can
efficiently compute these strategies.

Kousha Etessami AGTA: Lecture 12

7

memoryless strategies and
determinacy

Definition For a game Gv0
, a strategy si for player i

is a memoryless strategy if

for all wv, w′v ∈ Pl′i, si(wv) = si(w
′v), and

if wv0 ∈ Pl′i then si(wv0) = si(ǫ).

I.e., the strategy always makes the same move from
a vertex, regardless of the history of how it got there.

Let MLSi denote the set of memoryless strategies for
player i. Note MLSi is a finite set, even if Si is not.
In particular, if m = |Pli| is the number of vertices
belonging to player i, then |MLSi| ≤ |Σ|m.

Definition Gv0
is memorylessly determined if both

players have memoryless strategies that achieve “the
value” of the game. I.e.,

max
s1∈MLS1

inf
s2∈S2

u(s1, s2) = min
s2∈MLS2

sup
s1∈S1

u(s1, s2)

Theorem A Finitistic games on finite graphs are
memorylessly determined. Moreover, there is an
efficient (P-time) algorithm to compute memoryless
value-achieving strategies in such games.

Kousha Etessami AGTA: Lecture 12

8

the win-lose case:
easy “fixed point” algorithm

We first prove the theorem for finitistic win-lose
games via an easy “bottom up” fixed point algorithm.

Input: Game graph G = (V, E, pl, v0).
We assume w.l.o.g. that all infinite plays are a win
for player 2 (the other case is symmetric).
A “dead end” is a vertex with no outgoing edge.

Good := {v ∈ V | v a dead end that wins for player 1}.
Bad := {v ∈ V | v a dead end that wins for player 2}.

1. Initialize: Win1 := Good; St1 := ∅;

2. Repeat

Foreach v 6∈ Win1:
If (pl(v) = 1 & ∃ (v, v′) ∈ E : v′ ∈ Win1)
Win1 := Win1∪{v}; St1 := St1∪{v 7→ v′};

If (pl(v) = 2 & ∀ (v, v′) ∈ E : v′ ∈ Win1)
Win1 := Win1 ∪ {v};

Until The set Win1 does not change;

Player 1 has a Win.-Strategy iff v0 ∈ Win1. If so,
St1 is a memoryless winning strategy for player 1.

Kousha Etessami AGTA: Lecture 12

9

why does this work?

Proof of Theorem A: (for the win-lose case)
• First, we claim that for each v ∈ Win1, St1 is a

winning strategy for player 1 in the game Gv (i.e.,
the game that starts at node v).

Suppose v ∈ Win1. It must have entered Win1

after, say, m iterations of the repeat loop. By
induction on m, if player 1 plays according to
(partial) strategy St1, then it is guaranteed a win
in the game Gv within m moves. Note that St1
may be partial: it may only tell us how to move
from some vertices. This won’t matter.
Base case: m = 0, v ∈ Good.
Inductively: either v is player 1’s vertex or 2’s.
If it is player 1’s, then St1(v) = v′, where (v, v′) ∈
E and v′ ∈ Win1, and furthermore v′ entered
Win1 by m− 1 iterations. By induction St1 wins
for player 1 from v′ in m − 1 moves.
If v is player 2’s, then we know that for all (v, v′) ∈
E, v′ ∈ Win1, and furthermore v′ entered Win1

by ≤ m − 1 iterations. Thus, no matter what
move player 2 makes, in 1 move, by induction, we
will be at a vertex v′ ∈ Win1 where player wins
with St1 within m − 1 moves.

Kousha Etessami AGTA: Lecture 12

10

• Now consider v 6∈ Win1 when algorithm halts.
For each v′ ∈ pl−1(2), if ∃ (v′, v′′) ∈ E, with
v′′ 6∈ Win1, then pick one such v′′, and let
St2 := St2 ∪ {v′ 7→ v′′}. St2 may also be partial.
We claim St2 is a memoryless winning strategy
for player 2 in every game Gv, where v 6∈ Win1.
Suppose St2 is not a winning strategy for some
v 6∈ Win1. Then player 1 must be able to win by
reaching a Good vertex within say, m moves from
v against St2. Let’s show this is a contradiction.
Base case: m= 0, but then v ∈ Good. ⇒⇐.
Inductively: either v is player 1’s or player 2’s.
If player 1’s, then ∀(v, v′) ∈ E, v′ 6∈ Win1,
because otherwise by the algorithm v ∈ Win1.
Suppose player 1’s winning strategy is to play
(v, v′) ∈ E. It must have a win within m − 1
moves from v′ 6∈ Win1 against St2. ⇒⇐.
If it is player 2’s move, then one possibility
is v ∈ Bad, (⇒⇐). Otherwise, St2(v) = v′

must be defined: since v 6∈ Win1, there must
exist (v, v′) ∈ E with v′ 6∈ Win1. Otherwise,
by the algorithm, v ∈ Win1.
By induction, player 1 must have a (m − 1)-
winning strategy from v′ 6∈ Win1.⇒⇐.

Kousha Etessami AGTA: Lecture 12

11

generalizing to finitistic zero-sum

The generalization is not hard:
In a finitistic game, there can only be a bounded
number, r ≤ |V | + 1, of distinct payoffs u(π),

j1 < j2 < j3 < . . . < jr

and one of these, say jk, is the payoff u(π) for
all infinite plays π. Suppose, w.l.o.g., that k < r.
(If instead 1 < k, then we work symmetrically with
respect to player 2. If 1 = k = r, then all payoffs are
equal and there is nothing to do.)
Consider a new win-lose game where player 1 wins if
it attains payoff jr, and loses if its payoff is any less.
Use the fixed point algorithm on this game to find
a memoryless (partial) strategy for player 1 that is
winning from vertices in Win1 where payoff jr can
be obtained. We can then eliminate Win1 vertices
and the payoff jr. We get a new finitistic zero-
sum game, with payoffs j1 < . . . < jr−1. Repeat!!
(Homework asks you to solve some of these.)

Kousha Etessami AGTA: Lecture 12

12

non-finitistic win-lose h.o. games
a.k.a., Muller games

• We will only be interested in win-lose h.o. games.

By attaching a “self-loop” to every dead-end
vertex, every play becomes infinite, and we can
define the “payoffs” via a set F ⊆ 2V , where

F = {F ⊆ V | player 1 wins if inf(π) = F}

We call F the (Muller) winning condition. Let’s
call such win-lose h.o. games Muller games.

• Question: Are all Muller games determined?
Answer: Yes......

• Question: Are all Muller games memorylessly
determined?
Answer: No!
Consider the following Muller game,
F = {{v0, v1, v2}}:

v0

v1 v2

Player 1 Player 2

Does Player 1 have a winning strategy?
Does it have a memoryless winning strategy?

Kousha Etessami AGTA: Lecture 12

13

remarks
• Muller games and restricted variants of them are

important in applications to model checking. We
can’t do them full justice here.

• Every Muller game can be converted to an
“equivalent” (but potentially exponentially larger)
game with a limited kind of Muller winning
condition called a parity condition. These so
called parity games are memorylessly determined.

• Can we find winning strategies in parity games
efficiently (in P-time)?
This is a tantalizing open problem.
It follows from memoryless determinacy that
finding winning strategies for them is in NP ∩
co-NP: we can guess a memoryless strategy for
either player and efficiently verify that it is a
winning strategy.

• Next time you will learn more about parity games.

• A survey text on all this is:
[”Automata, Logics, and Infinite Games”,

edited by E. Grädel, W. Thomas, T. Wilke, 2002].

Kousha Etessami AGTA: Lecture 12

14

food for thought: back to LP

Consider the following LP, for solving a finitistic win-
lose game with game graph G. (Suppose w.l.o.g.,
player 1 loses if the play is infinite.)
Let V = {v1, . . . , vn} be the vertices of G. We will
have one LP variable xi for each vertex vi ∈ V .

Minimize xm

Subject to:

0 ≤ xi ≤ 1, for i = 1, . . . , n;
xi = 1, for vi a winning dead end for player 1.
xi = 0, for vi a losing dead end for player 1.
For each xi where pl(vi) = 1,

xi ≥ xj, for each (vi, vj) ∈ E.
For each xi where pl(vi) = 2,

and {vj1, . . . , vjr} = {v′ | (vi, v
′) ∈ E},

xi ≤ xjk
, for k = 1, . . . , r , and

xi ≥ xj1 + . . . + xjr − (r − 1)

–Convince yourself: the optimal value of this LP is 1
iff player 1 has a winning strategy in Gvm. (Incidental
corollary: the LP problem is “P-hard”.)
–Now, what if instead of 2 players, player 1 was
playing “alone against nature”? Could you formulate
an LP for 1’s optimal payoff? This would be a simple
instance of a “Markov Decision Process”.

Kousha Etessami AGTA: Lecture 12

