Algorithmic Game Theory and Applications

Lecture 10: Games in Extensive Form

Kousha Etessami

the setting and motivation

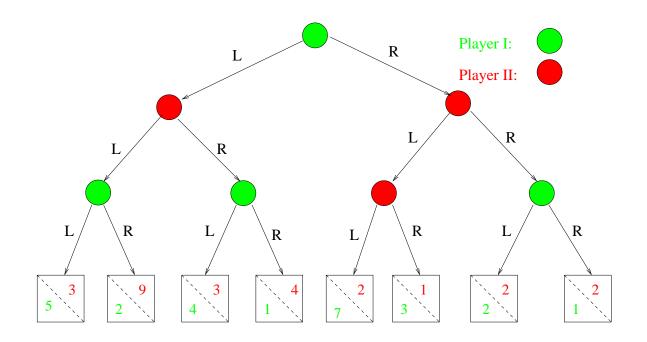
1

 Most games we encounter in "real life" are not in "strategic form": players don't pick their entire strategies independently ("simultaneously").

Instead, the game transpires over time, with players making "moves" to which other players react with their own "moves", etc.

Examples: chess, poker, bargaining, dating, ...

• A "game tree" looks something like this:



• But we may also need some other "features".

chance, information, etc.

Some tree nodes may be <u>chance</u> (probabilistic) nodes, controlled by no player (or, as is often said, controlled by "<u>nature</u>"). (Poker, Backgammon.)

Also, a player may not be able to distinguish between several of its "positions" or "nodes", because not all *information* is available to it. (Think Poker, with opponent's cards hidden.) Whatever move a player employs at a node must be employed at all nodes in the same "<u>information set</u>".



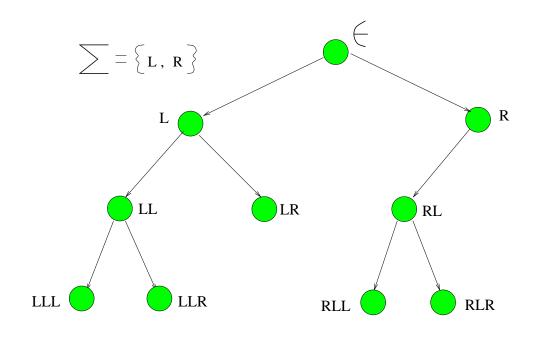
To define extensive form games, we have to formalize all these notions: game trees, whose turn it is to move, chance nodes, information sets, etc., etc., ... So don't be annoyed at the abundance of notation..... it's all simple.

Trees: a formal definition

- Let $\Sigma = \{a_1, a_2, \dots, a_k\}$ be an alphabet. A <u>tree</u> over Σ is a set $T \subseteq \Sigma^*$, of <u>nodes</u> $w \in \Sigma^*$ such that: if $w = w'a \in T$, then $w' \in T$.
- For a node $w \in T$, the <u>children</u> of w are $ch(w) = \{w' \in T \mid w' = wa , \text{ for some } a \in \Sigma\}.$

For $w \in T$, let $Act(w) = \{a \in \Sigma \mid wa \in T\}$ be the "<u>actions</u>" available at w.

- A <u>leaf</u> (or <u>terminal</u>) node $w \in T$ is one where $ch(w) = \emptyset$. Let $L_T = \{w \in T \mid w \text{ a leaf}\}.$
- A (finite or infinite) path π in T is a sequence π = w₀, w₁, w₂,... of nodes w_i ∈ T, where if w_{i+1} ∈ T then w_{i+1} = w_ia, for some a ∈ Σ. It is a complete path (or play) if w₀ = ε and every non-leaf node in π has a child in π. Let Ψ_T denote the set of plays of T.



games in extensive form

A Game in Extensive Form, \mathcal{G} , consists of

- 1. A set $N = \{1, \ldots, n\}$ of <u>players</u>.
- 2. A tree T, called the game tree, over some $\Sigma.$
- 3. A map $pl: T \mapsto N \cup \{0\}$ from each $w \in T$ to the player pl(w) whose "move" it is at w. (If pl(w) = 0 then it's "nature's move".) Let $Pl_i = pl^{-1}(i)$ be the nodes where it's player i's turn to move.
- 4. For each "nature" node, $w \in Pl_0$, a probability distribution $q_w : Act(w) \mapsto \mathbb{R}$ over its actions. (I.e., $q_w(a) \ge 0$, and $\sum_{a \in Act(w)} q_w(a) = 1$.)
- 5. For each player i, a map $info_i : Pl_i \mapsto \mathbb{N}$, which assigns to each $w \in Pl_i$ an index $info_i(w)$ for an <u>information set</u>. Let $Info_{i,j} = info_i^{-1}(j)$ be the set of nodes in the j'th information set for player i.

Furthermore, for any i, j, & all nodes $w, w' \in Info_{i,j}$, Act(w) = Act(w'). (I.e., the set of possible "actions" from all nodes in the same information set is the same.)

6. For each player i, a function $u_i : \Psi_T \mapsto \mathbb{R}$, from (complete) plays to the payoff for player i.

explanation and comments

- Question: Why associate payoffs to "plays" rather than to leaves at the "end" of play?
 <u>Answer:</u> We in general allow infinite trees. We will later consider "<u>infinite horizon</u>" games in which play can go on for ever. Payoffs are then determined by the entire history of play. For "<u>finite horizon</u>" games, where tree T is finite, it suffices to associate payoffs to the leaves, i.e., u_i: L_T → ℝ.
- We defined our alphabet of possible actions Σ to be finite, which is generally sufficient for our purposes. In other words, the tree is finitely branching. In more general settings, even the set of possible actions at a given node can be infinite.
- In subsequent lectures, we will mainly focus on the following class of games:

Definition An extensive form game G is called a game of **perfect information**, if every information set $Info_{i,j}$ has only 1 node.

pure strategies

7

• A <u>pure strategy</u> s_i for player i in an extensive game \mathcal{G} is a function $s_i : Pl_i \mapsto \Sigma$ that assigns actions to each of player i's nodes, such that $s_i(w) \in Act(w)$, & such that if $w, w' \in Info_{i,j}$, then $s_i(w) = s_i(w')$.

Let S_i be the set of pure strategies for player i.

• Given pure profile $s = (s_1, \ldots, s_n) \in S_1 \times \ldots \times S_n$,

if there are no chance nodes (i.e., $Pl_0 = \emptyset$) then s uniquely determines a play π_s of the game: players move according their strategies:

- Initialize
$$j := 0$$
, and $w_0 := \epsilon$;
- While $(w_j \text{ is not at a terminal node})$
If $w_j \in Pl_i$, then $w_{j+1} := w_j s_i(w_j)$;
 $j := j + 1$;
- $\pi_s = w_0, w_1, \dots$

• What if there are chance nodes?

pure strategies and chance

If there are chance nodes, then $s \in S$ determines a probability distribution over plays π of the game.

For finite extensive games, where T is finite, we can explicitly calculate the probability $p_s(\pi)$ of each play π using the probabilities $q_w(a)$:

Suppose $\pi = w_0, \ldots, w_m$, is a play of T. Suppose further that for each j < m, if $w_j \in Pl_i$, then $w_{j+1} = w_j s_i(w_j)$. Otherwise, let $p_s(\pi) = 0$.

Let w_{j_1}, \ldots, w_{j_r} be the chance nodes in π , and suppose, for each $k = 1, \ldots, r$, $w_{j_k+1} = w_{j_k}a_{j_k}$, i.e., the required action to get from node w_{j_k} to node w_{j_k+1} is a_{j_k} . Then

$$p_s(\pi) := \prod_{k=1}^r q_{w_{j_k}}(a_{j_k})$$

For infinite extensive games, defining these distributions in general requires <u>much more elaborate</u> definitions of the probability spaces, distributions, and densities (proper "measure theoretic" probability). (To even be able to define a distribution we would at least need a "finitistic" description of T's structure!)

We will avoid the heavy stuff as much as possible.

chance and expected payoffs

For a finite extensive game, given pure profile $s = (s_1, \ldots, s_n) \in S_1 \times \ldots \times S_n$, we can, define the "expected payoff" for player i under s as:

$$h_i(s) := \sum_{\pi \in \Psi_t} p_s(\pi) * u_i(\pi)$$

Again, for infinite games, much more elaborate definitions of "expected payoffs" would be required.

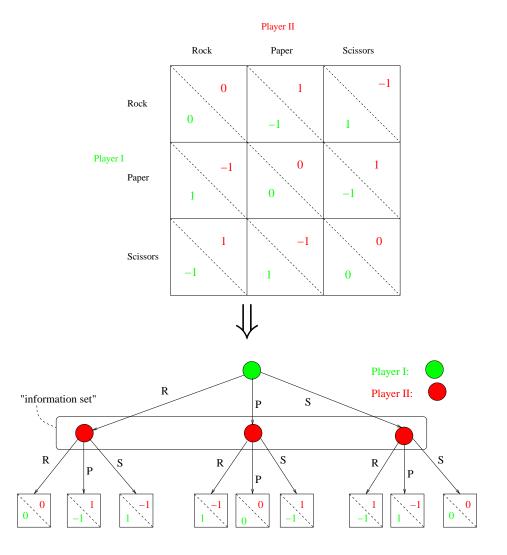
<u>Note:</u> This "expected payoff" does not arise because any player is mixing its strategies. It arises because the game itself contains randomness.

We can also combine both: players may also randomize amongst their strategies, and we could then define the overall expected payoff.

from strategic games to extensive games

Every finite strategic game Γ can be encoded easily and concisely as an extensive game \mathcal{G}_{Γ} . We illustrate this via the Rock-Paper-Scissor 2-player game, and leave the general *n*-player case as "homework".

(To encode infinite strategic games as extensive games, we would need an infinite action alphabet.)



from extensive games to strategic games

Every extensive game ${\mathcal G}$ can be viewed as a strategic game $\Gamma_{{\mathcal G}}$:

- In $\Gamma_{\mathcal{G}}$, the strategies for player i are the mappings $s_i \in S_i$.
- In $\Gamma_{\mathcal{G}}$, we define payoff $u_i(s) := h_i(s)$, for every pure profile s.

(For an infinite game, we would need the expectations $h_i(s)$ to somehow be defined!)

If the extensive game \mathcal{G} is <u>finite</u>, i.e., tree T is finite, then the strategic game $\Gamma_{\mathcal{G}}$ is also finite.

Thus, all the theory we developed for finite strategic games also applies to finite extensive games.

Unfortunately, the strategic game $\Gamma_{\mathcal{G}}$ is generally exponentially bigger than \mathcal{G} . Note that the number of pure strategies for a player i with $|Pl_i| = m$ nodes in the tree, is in the worst case $|\Sigma|^m$.

So it is often unwise to naively translate a game from extensive to strategic form in order to "solve" it. If we can find a way to avoid this blow-up, we should.

imperfect information & "perfect recall"

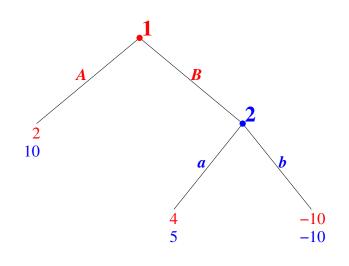
- An extensive form game (EFG) is a game of *imperfect information* if it has non-trivial (size > 1) information sets. Players don't have full knowledge of the current "state" (current node of the game tree).
- Informally, an imperfect information EFG has *perfect recall* if each player *i* never "forgets" <u>its own</u> sequence of prior actions and information sets.

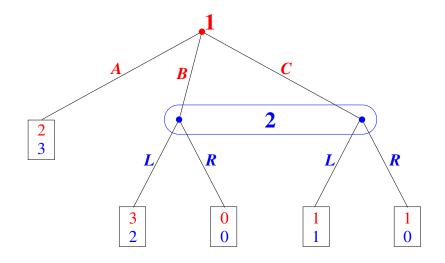
(A EFG has perfect recall if for any two nodes w and w' belonging to player i, if the "visible history" for player i at nodes w and w' differ, then $info_i(w) \neq info_i(w')$.)

- [Kuhn'53]: with perfect recall it suffices to restrict players' strategies to **behavior** strategies: strategies that only randomizes on actions at each information set belonging to the player, independently. (Without perfect recall bahavior strategies can be inadequate.)
- Perfect recall is often assumed as a "sanity condition" for extensive form games (most games we encounter do have this property).

subgames, subgame perfection, and more refined perfection

- A **subgame** of an extensive form game is any subtree of the game tree which has *self-contained information sets*. (I.e., every node in that subtree must be contained in an information set that is inself entirely contained in that subtree.)
- For an extensive form game G, a profile of behavior strategies b = (b₁,..., b_n) for the players is called a subgame perfect equilibrium (SGPE) if it defines a Nash equilibrium for every subgame of G.
- [Selten'75]: Nash equilibrium (NE) (and even SPGE) is inadequately refined as a solution concept for extensive form games. In particular, such equilibria can involve "Non-credible threats":





Addressing this general inadequecy of NE and SGPE requires a more refined notion of equilibrium called **trembling-hand perfect equilibrium** [Selten'73].

solving games of imperfect info.

For EFGs with perfect recall there are ways to avoid the exponential blow-up of converting to normal form. We only briefly mention algorithms for imp-inf games.

(See, e.g., [Koller-Megiddo-von Stengel'94].)

- In strategic form 2-player zero-sum games we can find minimax solutions efficiently (P-time) via LP. For 2-player zero-sum extensive imp-info games (without perfect recall), finding a minimax solution is NP-hard. NE's of 2-player EFGs can be found in exponential time.
- The situation is better with perfect recall: 2player zero-sum imp-info games of perfect recall can be solved in P-time, via LP, and 2-player NE's for arbitrary perfect recall games can be found in exponential time using a Lemke-type algorithm.
- [Etessami'2014]: For EFGs with ≥ 3 players with perfect recall, computing refinements of Nash equilibrium (including "trembling-hand perfect" and "quasi-perfect") can be reduced to computing a NE for a 3-player normal form game.

Our main priority will be games of perfect information. There the situation is much easier.

games of perfect information

Recall, a game of perfect information has only 1 node per information set. So, for these we can forget about information sets.

Examples: Chess, Backgammon, ... counter-Examples: Poker, Bridge, ...

Theorem([Zermelo'1912,Kuhn'53]) Every finite extensive game of perfect information, \mathcal{G} , has a NE (in fact a SGPE) in pure strategies.

In other words, there is a pure profile $(s_1, \ldots, s_n) \in S$ that is a Nash Equilibrium (and a subgame perfect equilibrium).

Our proof will actually provide an easy algorithm to efficiently compute such a pure profile given \mathcal{G} , using "backward induction".

A special case of this theorem says the following:

Proposition([Zermelo'1912]) In Chess, either

- 1. White has a "winning strategy", or
- 2. Black has a "winning strategy", or
- 3. Both players have strategies to force a draw.

Next time, perfect information games.