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the setting and motivation
• Most games we encounter in “real life” are not in

“strategic form”: players don’t pick their entire
strategies independently (“simultaneously”).

Instead, the game transpires over time, with
players making “moves” to which other players
react with their own “moves”, etc.
Examples: chess, poker, bargaining, dating, . . .

• A “game tree” looks something like this:
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• But we may also need some other “features”.
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chance, information, etc.
Some tree nodes may be chance (probabilistic) nodes,
controlled by no player (or, as is often said, controlled
by “nature”). (Poker, Backgammon.)

Also, a player may not be able to distinguish between
several of its “positions” or “nodes”, because not all
information is available to it. (Think Poker, with
opponent’s cards hidden.) Whatever move a player
employs at a node must be employed at all nodes in
the same “information set”.
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To define extensive form games, we have to formalize
all these notions: game trees, whose turn it is
to move, chance nodes, information sets, etc.,
etc., . . . So don’t be annoyed at the abundance
of notation......... it’s all simple.
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Trees: a formal definition

• Let Σ = {a1, a2, . . . , ak} be an alphabet. A tree
over Σ is a set T ⊆ Σ∗, of nodes w ∈ Σ∗ such
that: if w = w′a ∈ T , then w′ ∈ T .

• For a node w ∈ T , the children of w are
ch(w) = {w′ ∈ T | w′ = wa , for some a ∈ Σ}.

For w ∈ T , let Act(w) = {a ∈ Σ | wa ∈ T} be
the “actions” available at w.

• A leaf (or terminal) node w ∈ T is one where
ch(w) = ∅. Let LT = {w ∈ T | w a leaf}.

• A (finite or infinite) path π in T is a sequence
π = w0, w1, w2, . . . of nodes wi ∈ T , where if
wi+1 ∈ T then wi+1 = wia, for some a ∈ Σ. It
is a complete path (or play) if w0 = ε and every
non-leaf node in π has a child in π.
Let ΨT denote the set of plays of T .
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games in extensive form
A Game in Extensive Form, G, consists of
1. A set N = {1, . . . , n} of players.

2. A tree T , called the game tree, over some Σ.

3. A map pl : T 7→ N ∪ {0} from each w ∈ T to the
player pl(w) whose “move” it is at w. (If
pl(w) = 0 then it’s “nature’s move”.) Let
Pli = pl−1(i) be the nodes where it’s player i’s
turn to move.

4. For each “nature” node, w ∈ Pl0, a probability
distribution qw : Act(w) 7→ R over its actions.
(I.e., qw(a) ≥ 0, and

∑
a∈Act(w)

qw(a) = 1. )

5. For each player i, a map infoi : Pli 7→ N, which
assigns to each w ∈ Pli an index infoi(w) for an
information set. Let Infoi,j = info−1

i (j) be the set
of nodes in the j’th information set for player i.

Furthermore, for any i, j, & all nodes w,w′ ∈
Infoi,j, Act(w) = Act(w′). (I.e., the set of
possible “actions” from all nodes in the same
information set is the same.)

6. For each player i, a function ui : ΨT 7→ R, from
(complete) plays to the payoff for player i.
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explanation and comments

• Question: Why associate payoffs to “plays” rather
than to leaves at the “end” of play?
Answer: We in general allow infinite trees. We
will later consider “infinite horizon” games in
which play can go on for ever. Payoffs are then
determined by the entire history of play.
For “finite horizon” games, where tree T is finite,
it suffices to associate payoffs to the leaves, i.e.,
ui : LT 7→ R.

• We defined our alphabet of possible actions Σ
to be finite, which is generally sufficient for
our purposes. In other words, the tree is
finitely branching. In more general settings, even
the set of possible actions at a given node can be
infinite.

• In subsequent lectures, we will mainly focus on
the following class of games:

Definition An extensive form game G is
called a game of perfect information, if every
information set Infoi,j has only 1 node.
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pure strategies

• A pure strategy si for player i in an extensive
game G is a function si : Pli 7→ Σ that assigns
actions to each of player i’s nodes, such that
si(w) ∈ Act(w), & such that if w,w′ ∈ Infoi,j,
then si(w) = si(w′).
Let Si be the set of pure strategies for player i.

• Given pure profile s = (s1, . . . , sn) ∈ S1×. . .×Sn,

if there are no chance nodes (i.e., Pl0 = ∅) then s
uniquely determines a play πs of the game: players
move according their strategies:

– Initialize j := 0, and w0 := ε;
– While (wj is not at a terminal node)

If wj ∈ Pli, then wj+1 := wj si(wj);
j := j + 1;

– πs = w0, w1, . . .

• What if there are chance nodes?
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pure strategies and chance
If there are chance nodes, then s ∈ S determines a
probability distribution over plays π of the game.

For finite extensive games, where T is finite, we can
explicitly calculate the probability ps(π) of each play
π using the probabilities qw(a):

Suppose π = w0, . . . , wm, is a play of T .
Suppose further that for each j < m, if wj ∈ Pli,
then wj+1 = wj si(wj). Otherwise, let ps(π) = 0.

Let wj1, . . . , wjr be the chance nodes in π, and
suppose, for each k = 1, . . . , r, wjk+1 = wjkajk, i.e.,
the required action to get from node wjk to node
wjk+1 is ajk. Then

ps(π) :=
r∏

k=1

qwjk(ajk)

For infinite extensive games, defining these distributions
in general requires much more elaborate definitions
of the probability spaces, distributions, and densities
(proper “measure theoretic” probability). (To even
be able to define a distribution we would at least
need a “finitistic” description of T ’s structure!)

We will avoid the heavy stuff as much as possible.
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chance and expected payoffs

For a finite extensive game, given pure profile s =
(s1, . . . , sn) ∈ S1 × . . . × Sn, we can, define the
“expected payoff” for player i under s as:

hi(s) :=
∑
π∈Ψt

ps(π) ∗ ui(π)

Again, for infinite games, much more elaborate
definitions of “expected payoffs” would be required.

Note: This “expected payoff” does not arise because
any player is mixing its strategies. It arises because
the game itself contains randomness.

We can also combine both: players may also
randomize amongst their strategies, and we could
then define the overall expected payoff.
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from strategic games to
extensive games

Every finite strategic game Γ can be encoded easily
and concisely as an extensive game GΓ. We illustrate
this via the Rock-Paper-Scissor 2-player game, and
leave the general n-player case as “homework”.
(To encode infinite strategic games as extensive
games, we would need an infinite action alphabet.)
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from extensive games to
strategic games

Every extensive game G can be viewed as a strategic
game ΓG:

• In ΓG, the strategies for player i are the mappings
si ∈ Si.
• In ΓG, we define payoff ui(s) := hi(s), for every

pure profile s.

(For an infinite game, we would need the
expectations hi(s) to somehow be defined!)

If the extensive game G is finite, i.e., tree T is finite,
then the strategic game ΓG is also finite.
Thus, all the theory we developed for finite strategic
games also applies to finite extensive games.

Unfortunately, the strategic game ΓG is generally
exponentially bigger than G. Note that the number
of pure strategies for a player i with |Pli| = m nodes
in the tree, is in the worst case |Σ|m.

So it is often unwise to naively translate a game from
extensive to strategic form in order to “solve” it.
If we can find a way to avoid this blow-up, we should.
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imperfect information &
“perfect recall”

• An extensive form game (EFG) is a game of
imperfect information if it has non-trivial
(size > 1) information sets. Players don’t have full
knowledge of the current “state” (current node of
the game tree).

• Informally, an imperfect information EFG has
perfect recall if each player i never “forgets”
its own sequence of prior actions and information
sets.

(A EFG has perfect recall if for any two nodes
w and w′ belonging to player i, if the “visible
history” for player i at nodes w and w′ differ,
then infoi(w) 6= infoi(w′).)

• [Kuhn’53]: with perfect recall it suffices to restrict
players’ strategies to behavior strategies:
strategies that only randomizes on actions at
each information set belonging to the player,
independently. (Without perfect recall bahavior
strategies can be inadequate.)

• Perfect recall is often assumed as a “sanity
condition” for extensive form games (most games
we encounter do have this property).
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subgames, subgame perfection,
and more refined perfection

• A subgame of an extensive form game is any
subtree of the game tree which has self-contained
information sets. (I.e., every node in that subtree
must be contained in an information set that is
inself entirely contained in that subtree.)

• For an extensive form game G, a profile of
behavior strategies b = (b1, . . . , bn) for the players
is called a subgame perfect equilibrium (SGPE)
if it defines a Nash equilibrium for every subgame
of G.

• [Selten’75]: Nash equilibrium (NE) (and even
SPGE) is inadequately refined as a solution
concept for extensive form games. In particular,
such equilibria can involve “Non-credible
threats”:
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Addressing this general inadequecy of NE and
SGPE requires a more refined notion of equilibrium
called trembling-hand perfect equilibrium
[Selten’73].
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solving games of imperfect info.
For EFGs with perfect recall there are ways to avoid
the exponential blow-up of converting to normal
form. We only briefly mention algorithms for imp-inf
games.
(See, e.g., [Koller-Megiddo-von Stengel’94].)
• In strategic form 2-player zero-sum games we

can find minimax solutions efficiently (P-time)
via LP. For 2-player zero-sum extensive imp-info
games (without perfect recall), finding a minimax
solution is NP-hard. NE’s of 2-player EFGs can
be found in exponential time.

• The situation is better with perfect recall: 2-
player zero-sum imp-info games of perfect recall
can be solved in P-time, via LP, and 2-player NE’s
for arbitrary perfect recall games can be found in
exponential time using a Lemke-type algorithm.

• [Etessami’2014]: For EFGs with ≥ 3 players
with perfect recall, computing refinements of Nash
equilibrium (including “trembling-hand perfect”
and “quasi-perfect”) can be reduced to computing
a NE for a 3-player normal form game.

Our main priority will be games of perfect
information. There the situation is much easier.
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games of perfect information
Recall, a game of perfect information has only 1
node per information set. So, for these we can forget
about information sets.
Examples: Chess, Backgammon, . . .
counter-Examples: Poker, Bridge, . . .

Theorem([Zermelo’1912,Kuhn’53]) Every finite
extensive game of perfect information, G, has a
NE (in fact a SGPE) in pure strategies.

In other words, there is a pure profile (s1, . . . , sn) ∈ S
that is a Nash Equilibrium (and a subgame perfect
equilibrium).

Our proof will actually provide an easy algorithm to
efficiently compute such a pure profile given G, using
“backward induction”.

A special case of this theorem says the following:

Proposition([Zermelo’1912]) In Chess, either
1. White has a “winning strategy”, or

2. Black has a “winning strategy”, or

3. Both players have strategies to force a draw.

Next time, perfect information games.
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