
Algorithmic Game Theory and Applications:

Coursework 2

PLEASE ANSWER *** ONLY 2 *** OUT OF THE FOUR QUES-
TIONS on this coursework. DO NOT SUBMIT ANSWERS TO MORE
THAN TWO OF THE QUESTIONS (ONLY TWO WILL BE MARKED).

This homework is due at 12pm (noon), on Thursday, March 30th.
Please submit your solutions online as PDF files, using the LEARN page for
AGTA. (This will be via GradesScope, with similar instructions to how you
submitted the PDF files for Coursework 1.) Do not collaborate with other
students on the coursework. Your solutions must be your own.

Each question counts for 50 points, for a total of 100 points for AN-
SWERING *** TWO *** QUESTIONS ONLY.

1. Recall that a Nash equilibrium in an extensive form game is subgame
perfect nash equilibrium (SPNE) if it is also a Nash equilibrium in every
subgame of the original game. Formally, a subgame, is a game defined
by a subtree, Tv of the original game tree, T , such that the subtree Tv,
rooted at a node v, has the property that for every decendent u of v in
the game tree (including v itself), every node in the same information
set as u is also in the subtree Tv.

(a) [14 points] Give an example of a pure NE which is not a SPNE,
for a finite extensive form game of perfect information.

(b) [20 points] Prove that every finite extensive game of perfect infor-
mation where there are no chance nodes and where no player gets
the same payoff at any two distinct leaves, must have a unique
pure-strategy SPNE.

(c) [16 points] Give an example of a finite extensive form game that
contains a pure Nash Equilibrium but does not contain any subgame-
perfect pure Nash Equilibrium. Justify your answer.
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Figure 1: Question 2

2. Consider the finite extensive form game of imperfect information de-
picted in Figure 1. (When a leaf node is labeled by a pair (i, j) of
integers, that means the payoff at that leaf to player 1 is i and the
payoff to player 2 is j.)

(a) [6 points] Does this game satisfy “perfect recall”? Explain.

(b) [24 points] Identify all SPNEs in this game, in terms of “behavior
strategies”. Explain why what you have identified are all SPNEs.

Next, consider the following 2-player zero-sum finite extensive form
game of perfect information. There are two players, player 1 (you),
and player 2 (your opponent). There are three 6-sided dice, D1, D2,
and D3. However, these dice are not “ordinary” dice, in the sense that
their sides are not labeled with all the numbers 1 through 6. Instead:

• Die D1 has five of its sides labeled by the number 4 and one of
its sides labeled by the number 1.

• Die D2 has three of its sides labeled by the number 2 and three
of its sides labeled by the number 5.

• Die D3 has five of its sides labeled by the number 3, and one of
its sides labeled by the number 6.

All three dice D1, D2, and D3, have the following usual property of
an ordinary die: each time you role any of these dice, each of the six
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sides of that die are equally likely (with probability 1/6) to show up
on top when the die has stopped rolling.

The game between player 1 and 2 is played as follows:

• Player 1 (you) has the first “move”. Player 1 can either choose
one of the three dice, D1 or D2 or D3, or else it can “pass” and
allow player 2 (the opponent) to choose one of the three dice first.

• Next, it is player 2’s turn. If player 1 has already chosen a die,
then player 2 must choose one of the other two remaining dice
not chosen already by player 1. If instead player 1 has “passed”
in the prior move, then Player 2 must now choose one of the three
dice (any one). Player 2 cannot “pass”.
Afterwards, if player 1 had not already chosen a die (meaning
it had passed earlier and allowed player 2 to choose first), then
player 1 now has to choose one of the other two remaining dice,
not chosen already by player 2.

• Afterwards, when both players have each chosen their respective
die, each player roles their own die, and whoever rolls a higher
number wins a “payoff” of 1 Dollar from the other player. (So,
the payoff of the player who rolled a higher number is +1 and the
payoff of the player who rolled a lower number is −1. Note that it
isn’t possible for both players to roll the same number, because no
two dice among D1, D2, and D3 have a common number labeling
any one of their sides.)

Note that since this defines a finite 2-player zero-sum extensive form
game of perfect information, by Kuhn’s theorem there exists a pure
minimax profile in this game (i.e., a pure Nash equilibrium).

(c) [20 points] Compute the minimax value of this two player zero-
sum extensive form game (from the perspective of player 1 (you),
the maximizer), and compute a pure minimax profile in this game
(i.e., a pair of pure minmaximizer and pure maxminimizer strate-
gies, for player 1 and player 2, respectively).

Do not draw the extensive form game tree explicitly (it is too
big), and do not try to describe the pure minimax profile in
terms of moves from explicit nodes on the explicit game tree
(again, that would be too big and unmanagable). Instead, de-
scribe the pure strategies of the two players in the minimax profile

3



s tv2

v3

v1

2,4,4

5,7,5

7,3,9

6, 8, 9

1, 7, 3

2, 9, 8
6, 5, 4

6, 8, 7

Figure 2: Question 3

more intuitively and succinctly, by describing exactly how each
player should move and react to the other player’s prior possi-
ble moves/choice(s). Explain why the pure strategies you have
described constitute a minimax profile.

3. (a) [20 points] Recall Rosenthal’s Theorem, namely that every finite
congestion game has a pure Nash Equilibrium. In the proof we
gave in the lecture slides for Rosenthal’s theorem, we defined the
potential function ϕ(s), which for any pure strategy profile s is
defined as:

ϕ(s) :=
∑
r∈R

nr(s)∑
i=1

dr(i)

Later in the proof we claimed that ϕ(s) can also be expressed as
a different nested sum, but we didn’t prove that fact, and instead
said “check this yourself”. This question asks you to prove that
fact: Prove that for any pure strategy profile s the following
equality holds:

ϕ(s) =
n∑

i=1

∑
r∈si

dr(n
(i)
r (s))

(b) Consider the atomic network congestion game, with three players,
described by the directed graph in Figure 2.

In this game, every player i (for i = 1, 2, 3) needs to choose a
directed path from the source s to the target t. Thus, every
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player i’s set of possible actions (i.e., its set of pure strategies) is
the set of all possible directed paths from s to t.

Each edge e is labeled with a sequence of three numbers (c1, c2, c3).
Given a profile π = (π1, π2, π3) of pure strategies (i.e., s-t-paths)
for all three players, the cost to player i of each directed edge, e,
that is contained in player i’s path πi, is ck, where k is the total
number of players that have chosen edge e in their path. The
total cost to player i, in the given profile π, is the sum of the
costs of all the edges in its path πi from s to t. Each player of
course wants to minimize its own total cost.

i. [20 points] Compute a pure strategy NE in this atomic net-
work congestion game, giving also the total cost for each
player in that pure NE. Explain why what you have com-
puted is a pure NE.

ii. [10 points] Is the pure NE you have computed in part (i.)
pareto optimal in terms of costs, amongst the set of all pure
strategy combinations for the players? Explain.

4. The auction house Christie’s of London is auctioning a triptych (a
series of three related painting) by the famous artist Fracis Bacon,
entitled “Three Studies of Isabel Rawsthorne”. We will refer to the
three paintings in the triptych series as T1, T2, and T3, respectively.

Suppose that Christie’s hires you as an auction designer, and suppose
that you decide to use the Vickery-Clarke-Groves mechanism as an
auction, in order to determine which bidder should get which part(s)
of the triptych, and at what price. Suppose that there are only three
bidders. The three bidders’ names are: Susanne (S), Lakshmi (L), and
Bill (B).

Since you are running a VCG-based auction, you ask each bidder to
give you their valuation for every subset of the paintings in the trip-
tych, as part of the bidding process. Suppose that the valuation func-
tions vS , vL, and vB that you receive from the three bidders, S, L,
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and B, respectively, are as follows (the numbers denote 105 pounds):

valuation

bidder i vi(∅) vi(T1) vi(T2) vi(T3) vi(T1, T2) vi(T1, T3) vi(T2, T3) vi(T1, T2, T3)

i := S 0 16 16 13 29 36 29 54
i := L 0 4 7 12 38 37 37 53
i := B 0 10 18 4 26 28 39 54

(a) [28 points] Give a VCG outcome for this auction. In other words,
specify, in the VCG outcome, which bidders will get which of the
painting(s), and what price they will each pay for the painting(s)
they get. Justify your answer, and show your calculations.

(b) [16 points] Is the VCG outcome you have calculated in part (a)
unique? Are the VCG prices paid by the player’s uniquely deter-
mined? Justify your answer, and show your calculations.

(c) [6 points] Comment on the wisdom of choosing the VCG mech-
anism for this or any auction. Do you think it is a good idea to
do so? What if instead of this triptych, Christie’s wanted to do
a simultaneous auction of 20 Andy Warhol paintings, and they
knew that at least 30 viable bidders want to bid for (subsets of)
those paintings. Would you suggest using the VCG mechanism
for such an auction? What alternative auction would you use,
and why? Explain, briefly.
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