
Algorithms and Data Structures 2023/24
Week 5 tutorial sheet

1. In class we mostly worked with DFT for the case where n is a power of 2, and the
polynomial being evaluated has degree n − 1. However, we also showed that we can
apply the DFT and Inverse DFT when n is not a power of 2, by taking n ′ to be the
closest power of 2 satisfying n ≤ n ′, and adding some leading coefficients of value 0.

Make this idea formal: First show how to compute n ′. Also show that our DFT or
Inverse DFT still takes Θ(n lg(n)) time in terms of the original value n.

2. This exercise asks you to do a few complex number calculations. Evaluate each of
these. (See also rules for multiplication and division in the FFT notes.)

(a) 2i(3− i).

(b) 2i(i+ 1)2 + 4(i+ 1)3.

(c) 3i/(1+ i).

3. Compute DFT4〈0, 1, 2, 3〉. (do this directly, rather than by FFT, if you prefer).

This is Exercise 30.2-2, p. 838 of [CLRS].

4. Use the FFT to efficiently multiply the two polynomials p(x) = x−4 and q(x) = x2−1.
Use the following steps:

(a) First work out what will be the degree of the product polynomial pq. Take
deg(pq) + 1 as our n (and if necessary round up to the nearest power of 2).

(b) For this value of n (which we made sure was a power of 2), use trigonometry to
write down each of the nth roots-of-unity (so we have them to work with).

(c) Calculate the DFT for p(x) for nth roots of unity.

(d) Calculate the DFT for q(x) for nth roots of unity.

(e) Do pointwise multiplication of the two DFTs to get the DFT of pq(x) for nth
roots of unity.

(f) Calculate the Inverse DFT of the DFT for pq(x), to obtain the polynomial pq.
It’s a good idea to do this via DFT (and then swapping), like we saw in class.

(g) Check your answer by straight multiplication.

1


