Algorithms and Data Structures 2023/24 Week 3 tutorial sheet

Below are a list of *suggested* exercises, some from the back of either lecture 1, 2 or 3). Ask your tutor to cover the questions most important to you. You should see the tutorial as a resource to get answers to any questions, so don't feel compelled to stick to the sheet.

1. Work out (don't bother proving) for each pair of expressions below, whether A is O(B), $\Omega(B)$, $\Theta(B)$ (it could be none of these). Assume $k \ge 1, \epsilon > 0, c > 1$ are all constants.

A	B	0	Ω	Θ
$\lg^k n$	n^{ϵ}			
n^k	c^n			
\sqrt{n}	$n^{\sin n}$			
2^n	$2^{n/2}$			
$n^{\ln m}$	$m^{\ln n}$			
$\lg(n!)$	$\lg(n^n)$			

2. Define

$$p(n) = \sum_{i=0}^{d} a_i n^i,$$

where $a_d > 0$. So p(n) is a degree-*d* polynomial in *n*. Let *k* be some constant. Prove the following *by first principles*, from the definitions of $O(\cdot)$, $\Omega(\cdot)$ and $\Theta(\cdot)$.

- (a) If $k \ge d$, then $p(n) = O(n^k)$.
- (b) If $k \leq d$, then $p(n) = \Omega(n^k)$.
- (c) If k = d, then $p(n) = \Theta(n^k)$.
- 3. Analyse the asymptotic worst-case running time of the three POWER-REM algorithms from Lecture 1.