
Algorithms and Data Structures 2023/24
Week 9 sheet: Solutions

1. Draw an example of a weighted graph which has 2 MSTs.

There are lots of these. For example, take a triangle whose edges have values 1, 2, 2.
Then there are 2 MSTs, obtained by dropping either of the “2”-edges.

2. Let G,W be a weighted graph in which all edge weights are distinct.

Prove that the MST of G,W is unique.

Proof: By contradiction.
Suppose there are two different MSTs, T1 and T2. Choose (u, v) ∈ T1 \ T2. Let
T1(u), T1(v) be the two sub-MSTs obtained by deleting (u, v). Consider the path pu,v(T2)
between u and v in T2. Let E ′ be the edges of pu,v(T2) that cross the cut T1(u), T1(v).
We are guaranteed that |E ′| ≥ 1.

Two cases:
(1) Suppose W(e) > W(u, v) for some e ∈ E ′. Then define T2 ′ = T2 \ {e}) ∪ {(u, v)}.
This is a spanning tree of cost strictly less than T2. Contradiction!
(2) Suppose ∃e ∈ E ′ with W(e) < W(u, v). Then define T1 ′ = (T1 \ {(u, v)}) ∪ {e}.
This is a spanning tree of G with cost strictly less than T1. Contradiction!

In either case we prove that one of T1, T2 was not a MST.

3. This question asks us to consider a modification to Prim’s algorithm where we add all
the competing minimum-weight fringe edges in a single iteration of Prim’s algorithm.
The question being asked is whether this strategy would lead to the construction of
a Minimum Spanning Tree.

The answer is no.

Observation 1: This modification will not necessarily maintain a Tree through the
life of the algorithm - for example, if the current tree T contains nodes a, b, c, and
there are three competing minimum fringe edges (a, d), (a, f), (c, d) all of weight 2,
then adding all of them would induce a cycle. However, this answer is fairly easy . . .

suppose we tweak this algorithm to only add one fringe edge per fringe-vertex?

Well, then the answer is still no.

To see this consider the following graph as an example:

1

a

c

b

d

e

2

1 3
3

23

4

At the stage when the current spanning tree T contains a, b, c, there are three fringe
edges (a, d), (c, d), (b, e). Two of those edges, (c, d), (b, e), have the minimum fringe
edge weight 3. Also the fringe vertices (d and e) are distinct, so would both be added
to give a complete spanning tree of weight 9. However, if we just added one of (c, d)
and (b, d), then the weight 2 edge (d, e) would become available at the next step,
and we would end up with a tree of value 8.

4. This question considers the case when a graph has more than one edge with the
same weight value, in the context of Kruskal’s algorithm. In the case where edge
weights are non-unique, there may be more than one (in fact, there could be many)
MSTa. This question is asking us to “trick” Kruskal’s algorithm to return the MST
we want. Note that Kruskal’s algorithm is deterministic - once we have finished
sorting the edges in terms of weight, then every step of our algorithm is determined.
So our only chance to “trick” Kruskal is in doing the sorting.

This is how we do it.
Suppose we want the algorithm to return T, but by obeying the rules of Kruskal’s
algorithm. We use the following trick. Take *any* sorting algorithm and sort the
edges of G in terms of edge weight. Now look at this sorted list in the context of our
special MST T.
For every weight w that labels some edge of G, the edges of G with weight w will all
be grouped together in the sorted list. Identify which weight-w edges actually belong
to T (not just G) and move these to the front of the w-group of edges in the sorted
list (notice that after doing this the list is still sorted - but clearly not a stable sort!).
Do this for every weight w which labels *some* edge of G.

After doing this procedure, get Kruskal to start processing the edges in this order,
adding each edge iff its endpoints belong to different components of the current forest.

Claim: the tree that Kruskal returns is T.
proof: We prove this by induction. For each edge, we need to prove two things:
(1) If e is in T, it gets added by Kruskal.
(2) If e is not in T it does not get added by Kruskal.
Suppose that after processing k edges we have a forest F of little sub-MSTs such that
every edge of F also lies in T (and such that any edge of T \F appears after position k

in our special sorted list). This is the Induction Hypothesis.

2

Induction step: We must prove the same thing holds, after we process edge ek+1.

Case (1). Suppose ek+1 ∈ T. We must show Kruskal will add ek+1 to F.
Consider our current sub-forest F after adding e1, . . . , ek. The rule of Kruskal is that
ek+1 will be added to F iff u and v belong to different subtrees of F. However, recall
that F ⊆ T. If u and v lay in the same subtree of F, that would induce a cycle in
F∪ {ek+1}, and (since F∪ {ek+1} ⊆ T) therefore also induce a cycle in T. Contradiction!
We know T contains no cycles. Hence there is no problem, and ek+1 will be added.

Case (2). Suppose ek+1 6∈ T. We now show ek+1 will not be added to F.
Proof by contradiction. First observe that by our sorting of the edges (and by ek+1 6∈
T), it must be the case that for every (x, y) ∈ T \ F, W(x, y) > W(ek+1). Now
suppose (setting up for our contradiction) that ek+1 = (u, v) such that u and v

are in different components of F (and hence ek+1 will be added to F). Consider the
path pu,v(T) between u and v in T. Because u and v do not appear in the same
connected component in F, pu,v(T) must contain some edge (x, y) of T \ F. However,
if that is the case W(x, y) > W(u, v). Then we can obtain an alternative spanning
tree T ′ = (T \ {(x, y)}) ∪ {(u, v)} such that W(T ′) < W(T). Hence T was not a MST
at all. Contradiction! So ek+1 would never have been added.

3

