
Algorithms and Data Structures 2023/24
Week 8 solutions

1. Find an optimal parenthesization of a matrix-chain product whose sequence of di-
mensions is 〈5, 10, 12, 5, 50, 6〉.

Answer:

Basically this question is to show how to iterate the dynamic programming Matrix-
chain algorithm given in lecture 9. We have 5 matrices A1, . . . A5, hence we need
a 5-by-5 table/array which we call m. Our first step is to set m[i, i] = 0 for every
1 ≤ i ≤ 5 (also we black out the bottom left-hand half of the array, since cells in that
part of the array represent sequences Ai . . . Aj for i > j, which doesn’t make sense).

In this solution, I don’t actually draw out the s matrix. The entries of the s matrix
only matter for sequences of ≥ 3 matrices (as there is only one possible parenthesi-
sation for sequences of length 1 or 2). However, I do mention the values given to s in
the description below for the cases of ` = 3 (A1A2A3, A2A3A4 and A3A4A5), of ` = 4
(A1 . . . A4 and A2 . . . A5) and ` = 5.

Initialising the main matrix m, we get:

1 2 3 4 5
1 0
2 - 0
3 - - 0
4 - - - 0
5 - - - - 0

Now consider all “sequence windows” of length 2 (` = 2 in terms of line 4 of Ma-
trixChainOrder). In this case there is only ever one possible split (taking one
matrix on each side), hence there is no choice to be made - eg, for cell [1, 2], we have
m[1, 2] = 5 ∗ 10 ∗ 12 = 600.
Doing the same operation for m[2, 3], m[3, 4], m[4, 5], we get:

1 2 3 4 5
1 0 600
2 - 0 600
3 - - 0 3000
4 - - - 0 1500
5 - - - - 0

Next we consider windows of length 3 (` = 3 in the Algorithm).
We must fill-in m[1, 3],m[2, 4],m[3, 5]. I’ll do m[1, 3] in full:

1



For m[1, 3], we can choose k = 1 or k = 2 (k ← i to j − 1, line 8. of algorithm
MatrixChainOrder). If we take k = 1, our cost is

m[1, 1] +m[2, 3] + p0p1p3 = 0+ 600+ 5 ∗ 10 ∗ 5 = 850.

If we take k = 2, our cost is

m[1, 2] +m[3, 3] + p0p2p3 = 600+ 0+ 5 ∗ 12 ∗ 5 = 900.

Hence we set m[1, 3] = 850, s[1, 3] = 1 (remember s[i, j] stores the top-level split for
the optimum parenthesization). After doing m[2, 4],m[3, 5] similarly, we get the new
table:

1 2 3 4 5
1 0 600 850
2 - 0 600 3100
3 - - 0 3000 1860
4 - - - 0 1500
5 - - - - 0

We also have s[2, 4] = 3 and s[3, 5] = 3.

Next we do windows of length 4 - there are just two, [1, 4] and [2, 5]. Doing those
(I’m not giving details), we get

1 2 3 4 5
1 0 600 850 2100
2 - 0 600 3100 2400
3 - - 0 3000 1860
4 - - - 0 1500
5 - - - - 0

We also have s[1, 4] = 3 and s[2, 5] = 3.

Finally we must calculate m[1, 5]. There are 4 possibilities for top-level parentheses,
namely k = 1, 2, 3, 4. We have

m[1, 1] +m[2, 5] + p0p1p5 = 0+ 2400+ 5 ∗ 10 ∗ 6 = 2700

m[1, 2] +m[3, 5] + p0p2p5 = 600+ 1860+ 5 ∗ 12 ∗ 6 = 2820

m[1, 3] +m[4, 5] + p0p3p5 = 850+ 1500+ 5 ∗ 5 ∗ 6 = 2500

m[1, 4] +m[5, 5] + p0p4p5 = 2100+ 0+ 5 ∗ 50 ∗ 6 = 3600

Hence we have m[1, 5] = 2500 and s[1, 5] = 3.
You might want to trace back the s values to find the parenthesization.

2



2. Consider the following typesetting problem. The input is a sequence of n words con-
taining l1, l2, . . . , ln characters, respectively. Each line can hold at most P characters,
the text is left-aligned, and words cannot be split between lines. If a line contains
words from i to j (inclusive) then the number of spaces at the end of the line is
s = P−

∑j
k=i lk−(j− i) (because the words are separated by white spaces). We aim

to typeset the text so as to avoid large white spaces at the end of lines, i.e., we would
like to minimise the sum over all lines of the square of the number of white spaces at
the end of the line.

(a) Give an efficient algorithm for this problem.

Answer: We use dynamic programming. Let A[j] be the optimal cost (minimal
sum of squares of white spaces at the end of the line over all lines) one can achieve
by typesetting only the words 1, . . . , j and ignoring the remaining words. Then

A[j] = min
i<j:(T [j]−T [i]−(j−(i+1))≤P)

A[i] + (P − (T [j] − T [i]) − (j− (i+ 1))2

where T [j] =
∑j

i=1 li.

I.e., we first optimally typeset words up to i and then place the remaining words
from (i+ 1) to j in the last line. (There are (j−(i+ 1)) white spaces in the last
line that are not at the end of the line.)

We can compute a table of the values T [1 . . . n], and use dynamic programming
to to compute each value A[j] in sequence. (Return fail if any word longer than
P.)

At the end A[n] contains the value of the optimal solution. We can reconstruct
the optimal solution itself by maintaining backpointers (as usual in dynamic
programming) to record the optimal splitting of the words between lines. One
can also use an auxiliary data structure to record that.

(b) Formally prove the running time of the algorithm (matching upper and lower
bounds).

Answer: We can compute a table of the values T [1 . . . n] in O(n) steps. Each
of the n steps takes O(n) time to compute (trying different values of i < j), and
for j ≥ n/2 also Ω(n), so we get Θ(n2).

Note: It is also possible to get a bound in terms of P, i.e., O(n ∗ min(n, P)), by
using the fact that a line can hold at most dP/2e words (plus the separating spaces).
However, generally, if one interprets n as the full size of the problem instance and
encodes numbers in binary, then one could have P = Ω(2n). One the other hand,
if one explicitly considers P as a fixed constant, then the above would even yield
O(n ∗min(n, P)) = O(n).

3


