Algorithms and Data Structures 2023/24 Week 7 Solutions

1. Given a flow network $\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$, let f_1 and f_2 be two flows in \mathcal{N} (ie, satisfying the three flow properties wrt \mathcal{N}). The *flow sum* $f_1 + f_2$ is the function from $V \times V$ to \mathbb{R} defined by:

$$(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v)$$

for all $u, v \in V$.

Which of the three flow properties (wrt N) will $f_1 + f_2$ satisfy, and which will it violate?

Answer: The three properties are *capacity constraints*, *skew-symmetry*, and *flow conservation*.

Capacity constraints: $f_1 + f_2$ might *violate* the capacity constraints. As an example, consider the network of question 2. Let f_1 be the flow shown in question 2. Let f_2 be the flow that ships 4 units along the path $s \to x \to y \to t$. Then if we add these flows directly as prescribed in this question, we will (for example) define

$$(f_1 + f_2)(y, t) = f_1(y, t) + f_2(y, t) = 4 + 4 = 8.$$

This certainly breaks the capacity constraint for (y, t) which is 4.

Skew-symmetry: $f_1 + f_2$ will *satisfy* skew-symmetry. We know f_1 and f_2 individually satisfy skew-symmetry, because they are flows. Therefore for any (u, v), we have

$$(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v) = -f_1(v, u) - f_2(v, u) = -(f_1 + f_2)(v, u),$$

as required (using the defn of $f_1 + f_2$ and the skew-symmetry property for f_1, f_2).

Flow conservation: $f_1 + f_2$ will *satisfy* flow conservation. Flow conservation for a flow f states that for all $u \in V \setminus \{s, t\}$, we have $\sum_{v \in V} f(u, v) = 0$. We know this holds individually for f_1, f_2 . Let $u \in V \setminus \{s, t\}$. Then we can write

$$\sum_{\nu \in V} (f_1 + f_2)(u, \nu) = \sum_{\nu \in V} (f_1(u, \nu) + f_2(u, \nu)) = \sum_{\nu \in V} f_1(u, \nu) + \sum_{\nu \in V} f_2(u, \nu) = 0 + 0 = 0.$$

Hence flow conservation holds for $f_1 + f_2$.

tutors: Use this as an opportunity to point out the difference between this Q and the case when f_2 is a flow in the *residual network* (wrt f_1) - in that case everything has been set up for the capacity condition to also hold.

2. Question: we are given

Two questions:

- (a) Find a pair of subsets $X, Y \subseteq V$ such that f(X, Y) = -f(V X, Y).
- (b) Find a different pair of subsets $X, Y \subseteq V$ such that $f(X, Y) \neq -f(V X, Y)$.

Answer: The point of this question is to get thinking about flow between *sets of vertices*, by applying Lemma 3 of Lecture slides 10-11. However, it might be good to think about specific examples of (a), (b) first, before looking at the details of what the pattern is.

What we are asking is: when is it the case that

$$f(X,Y) + f(V - X,Y) = 0?$$

Remember from Lemma 3 (part 3) of slides 10-11 that for any two *disjoint* sets $X', Y' \subset V$, and any other set Z', and any flow f, we have $f(X', Z') + f(Y', Z') = f(X' \cup Y', Z')$. Observe that for our question, certainly X and V - X are disjoint sets. Hence by Lemma 3 (3), we know

$$f(X, Y) + f(V - X, Y) = f(X \cup (V - X), Y) = f(V, Y).$$

So we are testing whether f(V, Y) = 0 for (a), and whether $f(V, Y) \neq 0$ for (b) - once this is satisfied, X can be anything...

To make f(V, Y) = 0, we should either take Y such that $Y \cap \{s, t\} = \emptyset$, or $Y \cap \{s, t\} = \{s, t\}$. This can be seen by repeated application of part (3) of Lemma 3 from slides 10-11. To make $f(V, Y) \neq 0$, we should take Y such that $|Y \cap \{s, t\}| = 1$.

Here are some concrete examples of this behaviour:

- (a) As a concrete example, let $Y = \{v, x\}$. X can be *any* set, take $X = \{w\}$ as an example. Then f(X, Y) = -12 + 4 = -8. Then f(V X, Y) = 11 + 8 11 = 8.
- (b) As a concrete example, take $Y = \{s\}$. Take $X = \{w\}$ again. Then we have f(X, Y) = 0. We have f(V X, Y) = -11 8 = -19.

3. Question: execute the Ford-Fulkerson algorithm (using the Edmonds-Karp heuristic) on the Network below:

Answer: If we are using the Edmonds-Karp heuristic, then every time we search for an augmenting path, we must choose a shortest augmenting path.

For our given network, we can see that on the first iteration, the path $p1 = s \rightarrow v \rightarrow w \rightarrow t$ is a shortest path. We have c(p1) = 12. Hence we define the flow $f1 = f_{p1}$ by

$$f1(e) = f_{p1}(e) = \begin{cases} 12 & \text{for } e = (s, v), (v, w), (w, t) \\ -12 & \text{for } e = (v, s), (w, v), (t, w) \\ 0 & \text{otherwise} \end{cases}$$

Pictorially, we have

The residual network \mathcal{N}_{f1} is as follows:

We now examine \mathcal{N}_{f1} to find a shortest augmenting path. We find that $p2 = s \rightarrow x \rightarrow y \rightarrow t$ is a shortest augmenting path in \mathcal{N}_{f1} , min capacity 4, see above.... We therefore define a new flow f_{p2} such that 4 units are shipped along the edges of the path p2, and -4 shipped in the backwards direction of p2. Then we define the flow $f2 = f1 + f_{p2}$. Remember to point out this is possible "only" because f1 is a flow in \mathcal{N} and f2 is a flow in the "residual" network \mathcal{N}_{f1} . Below is the flow $f2 = f1 + f_{p2}$ in \mathcal{N} .

Below is the residual network \mathcal{N}_{f2} . If we again try the Edmonds-Karp rule for finding an augmenting path of shortest possible length, we find the path $p3 = s \rightarrow x \rightarrow y \rightarrow w \rightarrow t$ (this is of length 4, but there are no paths of length 3 or less in \mathcal{N}_{f2}). The min capacity along the path is 7.

We define a new flow f_{p3} in N_{f2} by shipping 7 units along p3. Then we define the flow f3 in N as $f3 = f2 + f_{p3}$. The flow looks as follows:

We compute the residual network \mathcal{N}_{f3} , see below for a picture.

By Ford-Fulkerson's algorithm, we now try for a (shortest) augmenting path in the N_{f3} . However, if we examine N_{f3} , we see that there is *no* augmenting path from s to t - the set of vertices accessible from s is now $\{s, v, x, y\}$.

Hence we terminate, returning the flow f3, of value 23.

- 4. Question: A well-known problem in graph theory is the problem of computing a *maximum matching* in a *bipartite graph* \mathcal{G} . Give an algorithm which shows how to solve this problem in terms of the network flow problem.
 - Definitions:

A (undirected) graph $\mathcal{G} = (V, E)$ is *bipartite* if we have $V = L \cup R$ for two disjoint sets L, R, such that for every edge e = (u, v) exactly one of the vertices u, v lies in L, and the other in R.

A matching in an (undirected) graph G is a collection M of edges, $M \subseteq E$, such that for every vertex $\nu \in V$, ν belongs to at most one edge of M.

A maximum matching is a matching of maximum cardinality (for a specific graph).

Answer:

To solve this question, we will design a network, based on the bipartite graph \mathcal{G} , where a maximum flow in the network corresponds to a maximum matching in \mathcal{G} .

Define the vertex set V' for our network \mathcal{N} to be $V' = L \cup R \cup \{s, t\}$, where s, t are two new distinguished vertices.

Define the (directed) edge set E' as follows:

$$E' = \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R, (u, v) \in E\} \cup \{(v, t) : v \in R\}.$$

notice that the middle set in the union above is just the edge set E of the original graph, with all of these edges now directed from L to R.

Define the capacities of the network as follows:

$$\begin{array}{ll} c(s,u)=1 & \mbox{ for every } u\in L\\ c(u,\nu)=1 & \mbox{ for every } u\in L, \nu\in R, (u,\nu)\in E\\ c(\nu,t)=1 & \mbox{ for every } \nu\in R \end{array}$$

I now claim that every flow of value k in \mathbb{N} corresponds to a matching of cardinality k in G. The max flow = maximum matching follows directly from this.

 \Rightarrow Suppose f is a flow of value k in \mathcal{N} . We assume without any loss of generality that f is an integral flow (because all capacities are integers).

Recall that in \mathbb{N} , the vertex **s** has |L| neighboring edges (s, u). By definition of the value of a flow, $\mathbf{k} = \sum_{u \in V} \mathbf{f}(s, u) = \sum_{u \in L} \mathbf{f}(s, u)$. Therefore exactly **k** of the (s, u) edges carry 1 unit of flow each (since no (s, u) edge can carry more than 1).

Moreover by Lemma 11 in Lecture slides 13-14, every (S,T) cut in the network must be carrying flow of value k. Hence if we take $S = \{s\} \cup L$, then we see there are exactly k (u, v) edges in the network which carry exactly 1 unit of flow from left to right (since no (u, v) edge can carry more than this).

Define $M = \{(u, v) \in E : f(u, v) = 1 \text{ in } N\}$. Certainly |M| = k. I now show that M is a matching. For every $u \in L$, the flow conservation property must hold. For this

network, this means that for every $u \in L$, we require $(\sum_{v \in R} f(u, v)) + f(u, s) = 0$. Therefore if f(s, u) = 0, we require f(u, v) = 0 for every $(u, v) \in E$.

If f(s, u) = 1 (so f(u, s) = -1), we require f(u, v) = 1 for exactly one $(u, v) \in E$ (using our integer assumption). Hence every $u \in L$ will appear at most once in M. We can use a similar argument to show that every $v \in R$ can appear at most once in M. Hence M is a matching.

 \Leftarrow This is easier. Just explain how the matching of G gets mapped to ${\mathfrak N}$ and check flow conservation.