
Algorithms and Data Structures 2023/24
Week 7 Solutions

1. Given a flow network N = (G = (V, E), c, s, t), let f1 and f2 be two flows in N (ie,
satisfying the three flow properties wrt N). The flow sum f1 + f2 is the function
from V × V to R defined by:

(f1 + f2)(u, v) = f1(u, v) + f2(u, v)

for all u, v ∈ V .

Which of the three flow properties (wrt N) will f1 + f2 satisfy, and which will it
violate?

Answer: The three properties are capacity constraints, skew-symmetry, and flow
conservation.

Capacity constraints: f1 + f2 might violate the capacity constraints. As an example,
consider the network of question 2. Let f1 be the flow shown in question 2. Let f2
be the flow that ships 4 units along the path s → x → y → t. Then if we add these
flows directly as prescribed in this question, we will (for example) define

(f1 + f2)(y, t) = f1(y, t) + f2(y, t) = 4+ 4 = 8.

This certainly breaks the capacity constraint for (y, t) which is 4.

Skew-symmetry: f1 + f2 will satisfy skew-symmetry. We know f1 and f2 individually
satisfy skew-symmetry, because they are flows. Therefore for any (u, v), we have

(f1 + f2)(u, v) = f1(u, v) + f2(u, v) = −f1(v, u) − f2(v, u) = −(f1 + f2)(v, u),

as required (using the defn of f1 + f2 and the skew-symmetry property for f1, f2).

Flow conservation: f1 + f2 will satisfy flow conservation. Flow conservation for a
flow f states that for all u ∈ V \ {s, t}, we have

∑
v∈V f(u, v) = 0. We know this holds

individually for f1, f2. Let u ∈ V \ {s, t}. Then we can write∑
v∈V

(f1+f2)(u, v) =
∑
v∈V

(f1(u, v)+f2(u, v)) =
∑
v∈V

f1(u, v)+
∑
v∈V

f2(u, v) = 0+0 = 0.

Hence flow conservation holds for f1 + f2.

tutors: Use this as an opportunity to point out the difference between this Q and
the case when f2 is a flow in the residual network (wrt f1) - in that case everything
has been set up for the capacity condition to also hold.

1

2. Question: we are given

s t

v w

x y

11/16

12/12
15/20

4/4

7/7

11/14

8/13

0/10
1/4

4/9

Two questions:

(a) Find a pair of subsets X, Y ⊆ V such that f(X, Y) = −f(V − X, Y).

(b) Find a different pair of subsets X, Y ⊆ V such that f(X, Y) 6= −f(V − X, Y).

Answer: The point of this question is to get thinking about flow between sets of
vertices, by applying Lemma 3 of Lecture slides 10-11. However, it might be good to
think about specific examples of (a), (b) first, before looking at the details of what
the pattern is.

What we are asking is: when is it the case that

f(X, Y) + f(V − X, Y) = 0?

Remember from Lemma 3 (part 3) of slides 10-11 that for any two disjoint sets
X ′, Y ′ ⊂ V , and any other set Z ′, and any flow f, we have f(X ′, Z ′) + f(Y ′, Z ′) =
f(X ′ ∪Y ′, Z ′). Observe that for our question, certainly X and V −X are disjoint sets.
Hence by Lemma 3 (3), we know

f(X, Y) + f(V − X, Y) = f(X ∪ (V − X), Y) = f(V, Y).

So we are testing whether f(V, Y) = 0 for (a), and whether f(V, Y) 6= 0 for (b) - once
this is satisfied, X can be anything...

To make f(V, Y) = 0, we should either take Y such that Y ∩ {s, t} = ∅, or Y ∩ {s, t} =
{s, t}. This can be seen by repeated application of part (3) of Lemma 3 from slides
10-11. To make f(V, Y) 6= 0, we should take Y such that |Y ∩ {s, t}| = 1.

Here are some concrete examples of this behaviour:

(a) As a concrete example, let Y = {v, x}. X can be *any* set, take X = {w} as an
example. Then f(X, Y) = −12+ 4 = −8. Then f(V − X, Y) = 11+ 8− 11 = 8.

(b) As a concrete example, take Y = {s}. Take X = {w} again. Then we have
f(X, Y) = 0. We have f(V − X, Y) = −11− 8 = −19.

2

3. Question: execute the Ford-Fulkerson algorithm (using the Edmonds-Karp heuris-
tic) on the Network below:

s t

v w

x y

12
20

7

4

9

4
10

13

16

14

Answer: If we are using the Edmonds-Karp heuristic, then every time we search for
an augmenting path, we must choose a shortest augmenting path.

For our given network, we can see that on the first iteration, the path p1 = s → v →
w → t is a shortest path. We have c(p1) = 12. Hence we define the flow f1 = fp1 by

f1(e) = fp1(e) =

12 for e = (s, v), (v,w), (w, t)
−12 for e = (v, s), (w, v), (t,w)
0 otherwise

Pictorially, we have

s t

v w

x y

7

4

9

4
10

13

14

12/16

12/12
12/20

The residual network Nf1 is as follows:

s t

v w

x y

7

4

9

4
10

13

14

8
12

12
12

4

We now examine Nf1 to find a shortest augmenting path. We find that p2 = s →
x → y → t is a shortest augmenting path in Nf1, min capacity 4, see above.... We
therefore define a new flow fp2 such that 4 units are shipped along the edges of the
path p2, and -4 shipped in the backwards direction of p2. Then we define the flow
f2 = f1 + fp2. Remember to point out this is possible *only* because f1 is a flow
in N and f2 is a flow in the *residual* network Nf1. Below is the flow f2 = f1 + fp2
in N.

3

s t

v w

x y

7
9

4
10

4/13

4/14
4/4

12/16
12/12

12/20

Below is the residual network Nf2. If we again try the Edmonds-Karp rule for finding
an augmenting path of shortest possible length, we find the path p3 = s → x → y →
w → t (this is of length 4, but there are no paths of length 3 or less in Nf2). The
min capacity along the path is 7.

s t

v w

x y

7

4

9

4
10

8
12

12
12

4

9

104

4

We define a new flow fp3 in Nf2 by shipping 7 units along p3. Then we define the
flow f3 in N as f3 = f2+ fp3. The flow looks as follows:

s t

v w

x y

9

4
10

4/4

12/16
12/12

11/13

11/14

7/7

19/20

We compute the residual network Nf3, see below for a picture.

s t

v w

x y

7
9

4
4

12
12

4

10

1

11

311

2

19

By Ford-Fulkerson’s algorithm, we now try for a (shortest) augmenting path in the
Nf3. However, if we examine Nf3, we see that there is *no* augmenting path from s

to t - the set of vertices accessible from s is now {s, v, x, y}.

Hence we terminate, returning the flow f3, of value 23.

4

4. Question: A well-known problem in graph theory is the problem of computing a
maximum matching in a bipartite graph G. Give an algorithm which shows how to
solve this problem in terms of the network flow problem.

Definitions:
A (undirected) graph G = (V, E) is bipartite if we have V = L ∪ R for two disjoint
sets L, R, such that for every edge e = (u, v) exactly one of the vertices u, v lies in L,
and the other in R.
A matching in an (undirected) graph G is a collection M of edges, M ⊆ E, such that
for every vertex v ∈ V , v belongs to at most one edge of M.
A maximum matching is a matching of maximum cardinality (for a specific graph).

Answer:

To solve this question, we will design a network, based on the bipartite graph G,
where a maximum flow in the network corresponds to a maximum matching in G.

Define the vertex set V ′ for our network N to be V ′ = L ∪ R ∪ {s, t}, where s, t are
two new distinguished vertices.

Define the (directed) edge set E ′ as follows:

E ′ = {(s, u) : u ∈ L} ∪ {(u, v) : u ∈ L, v ∈ R, (u, v) ∈ E} ∪ {(v, t) : v ∈ R}.

notice that the middle set in the union above is just the edge set E of the original
graph, with all of these edges now directed from L to R.

Define the capacities of the network as follows:

c(s, u) = 1 for every u ∈ L

c(u, v) = 1 for every u ∈ L, v ∈ R, (u, v) ∈ E

c(v, t) = 1 for every v ∈ R

I now claim that every flow of value k in N corresponds to a matching of cardinality k

in G. The max flow = maximum matching follows directly from this.⇒ Suppose f is a flow of value k in N. We assume without any loss of generality
that f is an integral flow (because all capacities are integers).

Recall that in N, the vertex s has |L| neighboring edges (s, u). By definition of the
value of a flow, k =

∑
u∈V f(s, u) =

∑
u∈L f(s, u). Therefore exactly k of the (s, u)

edges carry 1 unit of flow each (since no (s, u) edge can carry more than 1).
Moreover by Lemma 11 in Lecture slides 13-14, every (S, T) cut in the network must
be carrying flow of value k. Hence if we take S = {s} ∪ L, then we see there are
exactly k (u, v) edges in the network which carry exactly 1 unit of flow from left to
right (since no (u, v) edge can carry more than this).

Define M = {(u, v) ∈ E : f(u, v) = 1 in N}. Certainly |M| = k. I now show that M

is a matching. For every u ∈ L, the flow conservation property must hold. For this

5

network, this means that for every u ∈ L, we require (
∑

v∈R f(u, v)) + f(u, s) = 0.
Therefore if f(s, u) = 0, we require f(u, v) = 0 for every (u, v) ∈ E.
If f(s, u) = 1 (so f(u, s) = −1), we require f(u, v) = 1 for exactly one (u, v) ∈ E

(using our integer assumption). Hence every u ∈ L will appear at most once in M.
We can use a similar argument to show that every v ∈ R can appear at most once in
M. Hence M is a matching.⇐ This is easier. Just explain how the matching of G gets mapped to N and check
flow conservation.

6

