
Algorithms and Data Structures 2023/24
Notes for week 5 tutorial

1. There are two parts to this question.

(i) First we show how to compute n ′. This can be done in Θ(lg(n)) steps:

Initialise x to 1;
Keep multiplying x by 2 until we find x ≥ n.
Then set n ′ to be this final value of x.

It is likely that some of them will have the solution n ′ =def 2
dlg(n)e. This is also fine.

Observe that we are guaranteed that n ≤ n ′ < 2n.

(ii) Once n ′ has been computed, we add n ′−n 0-coefficients for the higher-order powers
xn, . . . xn

′−1 to the original polynomial of consideration. That is, we map p → p ′ by
adding all these 0-terms, or more likely, we map the original vector representation

〈a0, . . . , an−1〉→ 〈a0, . . . , an−1, 0, . . . , 0〉.
Then we compute FFTn ′ in Θ(n ′ lg(n ′)) time.

The time taken to pad the original polynomial with extra 0s is linear in n ′ − n, and
therefore negligible in regard to Θ(n ′ lg(n ′)). Now suppose that c1 is the constant of
the Ω side of the Θ(n ′ lg(n ′)) and c2 is the constant of the O side. So the running-
time T(FFTn ′) of FFT on the padded-polynomial satisfies

c1 · n ′ lg(n ′) ≤ T(FFTn ′) ≤ c2 · n ′ lg(n ′)

Well, then by n ≤ n ′ we also have c1n lg(n) ≤ T(FFTn ′), hence our overall algorithm
is Ω(n lg(n)) with respect to the constant c1.

Now applying n ′ < 2n, we can write

T(FFTn ′) ≤ c2 · n ′ lg(n ′)

< c2 · 2n(lg(2n))
= c2 · 2n(lg(n) + 1) ≤ 4c2n(lg(n)))

assuming n ≥ 2. Therefore our algorithm is also O(n lg(n)) (in this case via the
constant 4c2).

Hence our overall algorithm is Θ(n lg(n)) (regardless of power-of-2), as required.

1



2. Will just do (b) as an example.

We start with the expression 2i(i+ 1)2 + 4(i+ 1)3.

Let’s consider 2i(i + 1)2 first. If we calculate (i + 1)2, we get (i2 + 2i + 1), which is
−1+ 2i+ 1, which is 2i. If we then calculate 2i(2i), this is 4i2, which is −4.

For the second expression, we already know (i + 1)2 = 2i, so 4(i + 1)3 is 4(i + 1)2i,
which is 8(i2 + i) = 8(−1+ i) = 8i− 8.

Then adding these two together, we have −4+ 8i− 8, which is 8i− 12.

3. Tutors, just apply the formula.

4. Use the DFT to efficiently multiply the two polynomials p(x) = x−4 and q(x) = x2−1.

Answer: Following the suggested steps:

(a) Degree of product poly will be 3, so we need 4th roots of unity.

(b) Roots are ω0
4 = 1,ω

1
4 = i,ω

2
4 = −1,ω3

4 = −i.

(c) Evaluate p(x) at x = 1 ⇒ p(1) = −3. For x = ω1
4 = i, I get p(i) = i − 4. For

x = −1, we get p(−1) = −5. For x = −i we get p(−i) = −i− 4.

So the DFT4 of p is 〈−3, i− 4,−5,−i− 4〉.
(d) Same way we get 〈0,−2, 0,−2〉 for the DFT4 of q.

(e) Multiply these DFTs in a pointwise fashion to get the following DFT4 for pq.

〈0, 8− 2i, 0, 8+ 2i〉

(f) Finally compute the inverse DFT to recover the coefficients of pq. We follow the
rules for DFT−1 from slide 22 of Lectures 5 & 6.

(i) Compute z =DFT4(〈0, 8− 2i, 0, 8+ 2i〉), (yes, that’s right: forwards DFT, not
inverse DFT).

Now, because the vector z is only length 4 and quite a simple one, it would not
be too difficult to just compute DFT4(z) by substitution. But for practice we will
use the FFT recurrence to compute it.

As we know the vector z defines a polynomial

Z(x) = z0 + z1x+ z2x
2 + z3x

3,

and that the DFT is defined in terms of this polynomial.

2



So, back to slide 9; and we know that Zeven(y) = z0+z2y and Zodd(y) = z1+z3y.
That means that we will want DFT2(〈z0, z2〉) and also DFT2(〈z1, z3〉). (note that
we could also have determined this is what we need by checking the Algorithm
(lines 4 and 5) of slide 13 of the lectures 5-6).

Now 〈z0, z2〉 = 〈0, 0〉.
Also 〈z1, z3〉 = 〈8− 2i, 8+ 2i〉.
It is trivial that DFT2(〈0, 0〉) = 〈0, 0〉.
By substitution (of 1 and of ω1

2 = −1), DFT2(〈8− 2i, 8+ 2i〉) = 〈16,−4i〉.
Next we apply the rules of the FFT recurrence on slide 10 (for n = 4):

• w14 = 1:

Z(1) = Zeven(1) + 1 · Zodd(1)
= 0+ 1 · 16 = 16.

• w14 = i:

Z(i) = Zeven(i
2) + i · Zodd(i2)

= Zeven(−1) + i · Zodd(−1) = 0+ i(−4i) = 4.

• w24 = −1:

Z(−1) = Zeven((−1)
2) − 1 · Zodd((−1)2)

= Zeven(1) − 1 · Zodd(1) = 0− (16) = −16.

• w34 = −i:

Z(−i) = Zeven((−i)
2) − i · Zodd((−i)2)

= Zeven(−1) − i · Zodd(−1) = 0− i(−4i) = −4.

So
z = 〈16, 4,−16,−4〉.

(ii) Next (following the rule on slide 22 of lectures 5-6) we must compute z ′ =
〈z0/4, z3/4, z2/4, z1/4〉. z ′ will be the list of coefficients for pq in least significant
order.

Note we are deliberately reversing the final 3 entries (this would be final n− 1
entries for larger n, first entry is the only one that stays there). Check your
notes to see why this is the case.

With our vector z above, this gives

z = 〈4,−1,−4, 1〉.

3



So the polynomial pq(x) is

pq(x) = 4− x− 4x2 + x3.

If we check back to the original polynomials p, q and multiply direct, we verify
that our DFT computation is correct

4


