Algorithms and Data Structures 2023/24 Notes for week 5 tutorial

1. There are two parts to this question.

(i) First we show how to compute \mathfrak{n}' . This can be done in $\Theta(\lg(\mathfrak{n}))$ steps:

Initialise x to 1; Keep multiplying x by 2 until we find $x \ge n$. Then set n' to be this final value of x.

It is likely that some of them will have the solution $n' =_{def} 2^{\lceil \lg(n) \rceil}$. This is also fine. Observe that we are guaranteed that $n \le n' < 2n$.

(ii) Once n' has been computed, we add n'-n 0-coefficients for the higher-order powers $x^n, \ldots x^{n'-1}$ to the original polynomial of consideration. That is, we map $p \to p'$ by adding all these 0-terms, or more likely, we map the original vector representation

$$\langle a_0,\ldots,a_{n-1}\rangle \rightarrow \langle a_0,\ldots,a_{n-1},0,\ldots,0\rangle.$$

Then we compute $FFT_{n'}$ in $\Theta(n' \lg(n'))$ time.

The time taken to pad the original polynomial with extra 0s is linear in n' - n, and therefore negligible in regard to $\Theta(n' \lg(n'))$. Now suppose that c_1 is the constant of the Ω side of the $\Theta(n' \lg(n'))$ and c_2 is the constant of the O side. So the running-time $T(FFT_{n'})$ of FFT on the padded-polynomial satisfies

$$c_1 \cdot n' \lg(n') \leq \ \mathsf{T}(\mathrm{FFT}_{n'}) \leq \ c_2 \cdot n' \lg(n')$$

Well, then by $n \leq n'$ we also have $c_1 n \lg(n) \leq T(FFT_{n'})$, hence our overall algorithm is $\Omega(n \lg(n))$ with respect to the constant c_1 .

Now applying n' < 2n, we can write

$$\begin{array}{lll} \mathsf{T}(\mathrm{FFT}_{\mathfrak{n}'}) & \leq & c_2 \cdot \mathfrak{n}' \lg(\mathfrak{n}') \\ & < & c_2 \cdot 2\mathfrak{n}(\lg(2\mathfrak{n})) \\ & = & c_2 \cdot 2\mathfrak{n}(\lg(\mathfrak{n}) + 1) & \leq & 4c_2\mathfrak{n}(\lg(\mathfrak{n}))) \end{array}$$

assuming $n \ge 2$. Therefore our algorithm is also $O(n \lg(n))$ (in this case via the constant $4c_2$).

Hence our overall algorithm is $\Theta(n \lg(n))$ (regardless of power-of-2), as required.

2. Will just do (b) as an example.

We start with the expression $2i(i + 1)^2 + 4(i + 1)^3$. Let's consider $2i(i + 1)^2$ first. If we calculate $(i + 1)^2$, we get $(i^2 + 2i + 1)$, which is -1 + 2i + 1, which is 2i. If we then calculate 2i(2i), this is $4i^2$, which is -4. For the second expression, we already know $(i + 1)^2 = 2i$, so $4(i + 1)^3$ is 4(i + 1)2i, which is $8(i^2 + i) = 8(-1 + i) = 8i - 8$. Then adding these two together, we have -4 + 8i - 8, which is 8i - 12.

- 3. Tutors, just apply the formula.
- 4. Use the DFT to efficiently multiply the two polynomials p(x) = x-4 and $q(x) = x^2-1$.

Answer: Following the suggested steps:

- (a) Degree of product poly will be 3, so we need 4th roots of unity.
- (b) Roots are $\omega_4^0 = 1, \omega_4^1 = i, \omega_4^2 = -1, \omega_4^3 = -i.$
- (c) Evaluate p(x) at $x = 1 \Rightarrow p(1) = -3$. For $x = \omega_4^1 = i$, I get p(i) = i 4. For x = -1, we get p(-1) = -5. For x = -i we get p(-i) = -i 4. So the DFT₄ of p is $\langle -3, i - 4, -5, -i - 4 \rangle$.
- (d) Same way we get (0, -2, 0, -2) for the DFT₄ of **q**.
- (e) Multiply these DFTs in a pointwise fashion to get the following DFT_4 for pq.

$$(0, 8 - 2i, 0, 8 + 2i)$$

(f) Finally compute the inverse DFT to recover the coefficients of pq. We follow the rules for DFT⁻¹ from slide 22 of Lectures 5 & 6.

(i) Compute $z = DFT_4(\langle 0, 8-2i, 0, 8+2i \rangle)$, (yes, that's right: forwards DFT, not inverse DFT).

Now, because the vector z is only length 4 and quite a simple one, it would not be too difficult to just compute $DFT_4(z)$ by substitution. But for practice we will use the FFT recurrence to compute it.

As we know the vector z defines a polynomial

$$\mathsf{Z}(\mathbf{x}) = z_0 + z_1 \mathbf{x} + z_2 \mathbf{x}^2 + z_3 \mathbf{x}^3,$$

and that the DFT is defined in terms of this polynomial.

So, back to slide 9; and we know that $Z_{even}(y) = z_0 + z_2 y$ and $Z_{odd}(y) = z_1 + z_3 y$. That means that we will want $DFT_2(\langle z_0, z_2 \rangle)$ and also $DFT_2(\langle z_1, z_3 \rangle)$. (note that we could also have determined this is what we need by checking the Algorithm (lines 4 and 5) of slide 13 of the lectures 5-6).

Now $\langle z_0, z_2 \rangle = \langle 0, 0 \rangle$.

Also $\langle z_1, z_3 \rangle = \langle 8 - 2i, 8 + 2i \rangle$.

It is trivial that $DFT_2(\langle 0, 0 \rangle) = \langle 0, 0 \rangle$. By substitution (of 1 and of $\omega_2^1 = -1$), $DFT_2(\langle 8 - 2i, 8 + 2i \rangle) = \langle 16, -4i \rangle$. Next we apply the rules of the FFT recurrence on slide 10 (for n = 4):

• $w_4^1 = 1$:

$$Z(1) = Z_{even}(1) + 1 \cdot Z_{odd}(1)$$

= 0 + 1 \cdot 16 = 16.

• $w_4^1 = i$:

$$Z(i) = Z_{even}(i^2) + i \cdot Z_{odd}(i^2) = Z_{even}(-1) + i \cdot Z_{odd}(-1) = 0 + i(-4i) = 4.$$

• $w_4^2 = -1$:

$$Z(-1) = Z_{even}((-1)^2) - 1 \cdot Z_{odd}((-1)^2)$$

= $Z_{even}(1) - 1 \cdot Z_{odd}(1) = 0 - (16) = -16.$

• $w_4^3 = -i$:

$$\begin{array}{lll} \mathsf{Z}(-i) &=& \mathsf{Z}_{even}((-i)^2) - i \cdot \mathsf{Z}_{odd}((-i)^2) \\ &=& \mathsf{Z}_{even}(-1) - i \cdot \mathsf{Z}_{odd}(-1) = \mathsf{0} - i(-4i) = -4. \end{array}$$

So

$$z = \langle 16, 4, -16, -4 \rangle.$$

(ii) Next (following the rule on slide 22 of lectures 5-6) we must compute $z' = \langle z_0/4, z_3/4, z_2/4, z_1/4 \rangle$. z' will be the list of coefficients for pq in least significant order.

Note we are *deliberately* reversing the final 3 entries (this would be final n - 1 entries for larger n, first entry is the only one that stays there). Check your notes to see why this is the case.

With our vector z above, this gives

$$z = \langle 4, -1, -4, 1 \rangle.$$

So the polynomial pq(x) is

$$pq(x) = 4 - x - 4x^2 + x^3.$$

If we check back to the original polynomials p,q and multiply direct, we verify that our DFT computation is correct