1.

2.

Algorithms and Data Structures 2023 /24
Notes for week 4

The recurrence (as usual nis j —i+1) is

Tew(n) = 1 ifn=1
kM Tem([2]) + Tem ([3]) +4 ifn > 1

The 1 for the case of n = 1 comes from the observation that the only work done in this
case is the comparison of 1 and j. The 4 in the recursive case comes from the i < j test,
the assignment to m (I guess it is debatable how many operations this corresponds
to), the test { < r, and the subsequent return.

Then using the Master theorem, we have k = 0 and ¢ = 1. Hence running time is
O(n).
(a) We prove T(n) = (N)*(1 +1g(n)) for all powers-of-2 by induction.

base case: p = 0 and n = 1. Then T(1) = 1 by definition. Also 12(1 +1g(1)) =
12(1 +0) = 1. So true.
Induction hypothesis (IH): T(1) = (M)*(1 +1g(n)) forn =1,...2P.
Induction step: We must prove that under the (IH), that the claim also holds for
n =20t

We have p+1 > 1, s0 2P*! > 2, so we can apply the recurrence to get

T2 = 4T(|2°71/2]) +2°0*)
= 4T(2P) 4 22(PHD) (because 2P1/2 = 2P € N)
= 427701 +1g(27) + 2271 (by (IH))
_ 22p+2(] +1g(27)) + 22(p+1)

_ 22p+2(1g(2p+1)) + 22(p+1) (by lg(2-2P) =1g(2) +1g(2P) =1+ lg(zp))

= 221 4+ 1g(2P),

as required.

Note that the first line is obtained by substituting n = 2P*" into the recurrence;
the second line is by observing that |-] is unnecessary as 2P*'/2 = 2P is an
integer; the third line is due to substituting the (IH) for T(2P), 2P being strictly
smaller than 2P*': the fourth and fifth lines come from applying multiplication
and properties-of-logs directly; and the final line by rearranging terms.

(b)

We can just prove T(n) < T(n+1) for all n € N. Then we can use transitivity to
observe that T(j) < T(k) for all j < k,j,k € N. there are other ways, eg working
explicitly with n and m, but the (IH) would be slightly messier in wording - eg,
see slide 14 of lectures 2-3: where the (IH) is less tidy.

First we prove the base case.

Base case: k = 1. We have T(1) = 1; however T(2) =4 - T(1) + 22 = §; clearly
T(1) < T(2).

Next we formulate our Induction Hypothesis.

Induction Hypothesis (IH): for every k,1 < k <n, we have T(k) < T(k+1).
Induction step: Based on the (IH) for all k < n, we will show T(n) < T(n+ 1)
also. Note we must have n > 2 (else we’d be in the base case), so the recursive
step of the recurrence applies to both T(n) and also T(n + 1). We can write

T(n) = 4T((3))+n
Tm+1) = L“—“J (n+1)>

Now observe that either
Jor [=[5]+1.
= [%]), we have 4T (L“HJ T(15]

In the second case (n odd) the (IH) can be applied to |5 | because |
is true always when n > 2). Hence the (IH) tells us that 4T(|5]) <

We get 4T(|3]) < 4T([“T“j) in either case.

Alson? < (n+1)%. Combining these two facts, we get that overall T(n) < T(n+1)
(ie, given the (IH), the claim holds for n also)

By induction, we have T(n) < T(n+ 1) for all n € N.

).
5] <n (this
<AT(*7)).

(*) Note we really needed a recurrence with = and with explicit constants (no O,
no ©) to prove the strictly increasing. This is because we substituted the T
on the right-hand side and the left-hand side of the claim T(j) < T(k).

Now consider an arbitrary n € N. Let p be the greatest integer such that 2P <n
(note we are then guaranteed 2P > n/2).

By (a), T(2P) = (2P)?(1 +1g(27)). By (b), we know that T(n) > T(2P).
By above 2P > n/2. Hence we have
T)>T((2°) = (2°)°(1 +1g(2)
> (n/2)*(1 +1g(n/2))
(n?/4)(1g(n)).

This gives Q(n?Ig(n)) for ng =1 and ¢ = 1/4.

3. Use Strassen’s algorithm to compute the matrix product

1 3 8 4

5 7 6 2)°
Just set up the P1 -P7 equations on the board, multiply them out, then evaluate
Ci1, Cizy C21, C22. You'll need to have lecture 4 (or the book) along with you.

4. Describe an algorithm for efficiently multiplying a (p x q) matrix with a (q x 1) matrix,
where p, q,T are arbitrary positive integers. The running time should be @(n'8")),
where n = max{p, q, 1}.

Answer:

Let A be the p x q matrix, and B be the q X r matrix. We round up the matrices to
become n x n matrices A’ B’, keeping A in the top lhs of A’ (and similarly B in the
top lhs of B’). All the entries outside the top-left p x q of A’ are 0 and similarly for
entries outside the top-left q x r of B’.

We call STRASSEN(A’,B’) and then extract the top-left hand p x r matrix.

For this algorithm it’s clear that the runtime is @(n'8")) (because that is the running
time of STRASSEN on n X n matrices, and because the “extra work” in mapping to-
and-from n x 1 matrices is only O(n?)).

Observation: A tangential issue wrt this algorithm is that for this general “rectangular”
case it is NOT clear that this “reduce to STRASSEN” algorithm is often a good strategy.
Suppose wlog that p = max{p, q,r}. Then the naive matrix multiplication algorithm
is ©(pqr). Our asymptotic running-time from “reduce to STRASSEN” is only better if
qr > p?=1 ~ p'8 which is not necessarily the case in the “rectangular” setting.

