
Algorithms and Data Structures 2023/24
Notes for week 4

1. The recurrence (as usual n is j− i+ 1) is

TRM(n) =

{
1 if n = 1

TRM(bn2 c) + TRM(d
n
2
e) + 4 if n > 1

The 1 for the case of n = 1 comes from the observation that the only work done in this
case is the comparison of i and j. The 4 in the recursive case comes from the i < j test,
the assignment to m (I guess it is debatable how many operations this corresponds
to), the test ` < r, and the subsequent return.

Then using the Master theorem, we have k = 0 and c = 1. Hence running time is
Θ(n).

2. (a) We prove T(n̂) = (n̂)2(1+ lg(n̂)) for all powers-of-2 by induction.

base case: p = 0 and n = 1. Then T(1) = 1 by definition. Also 12(1 + lg(1)) =
12(1+ 0) = 1. So true.

Induction hypothesis (IH): T(n̂) = (n̂)2(1+ lg(n̂)) for n̂ = 1, . . . 2p.

Induction step: We must prove that under the (IH), that the claim also holds for
n̂ = 2p+1.

We have p+ 1 ≥ 1, so 2p+1 ≥ 2, so we can apply the recurrence to get

T(2p+1) = 4T(b2p+1/2c) + 22(p+1)

= 4T(2p) + 22(p+1) (because 2p+1/2 = 2p ∈ N)

= 4(2p)2(1+ lg(2p)) + 22(p+1) (by (IH))

= 22p+2(1+ lg(2p)) + 22(p+1)

= 22p+2(lg(2p+1)) + 22(p+1) (by lg(2 · 2p) = lg(2) + lg(2p) = 1+ lg(2p))

= 22p+2(1+ lg(2p+1)),

as required.

Note that the first line is obtained by substituting n̂ = 2p+1 into the recurrence;
the second line is by observing that b·c is unnecessary as 2p+1/2 = 2p is an
integer; the third line is due to substituting the (IH) for T(2p), 2p being strictly
smaller than 2p+1; the fourth and fifth lines come from applying multiplication
and properties-of-logs directly; and the final line by rearranging terms.

1



(b) We can just prove T(n) ≤ T(n+ 1) for all n ∈ N. Then we can use transitivity to
observe that T(j) ≤ T(k) for all j < k, j, k ∈ N. there are other ways, eg working
explicitly with n and m, but the (IH) would be slightly messier in wording - eg,
see slide 14 of lectures 2-3: where the (IH) is less tidy.

First we prove the base case.

Base case: k = 1. We have T(1) = 1; however T(2) = 4 · T(1) + 22 = 8; clearly
T(1) < T(2).

Next we formulate our Induction Hypothesis.

Induction Hypothesis (IH): for every k, 1 ≤ k < n, we have T(k) < T(k+ 1).

Induction step: Based on the (IH) for all k < n, we will show T(n) ≤ T(n + 1)
also. Note we must have n ≥ 2 (else we’d be in the base case), so the recursive
step of the recurrence applies to both T(n) and also T(n+ 1). We can write

T(n) = 4T(bn
2
c) + n2

T(n+ 1) = 4T(bn+ 1

2
c) + (n+ 1)2

Now observe that either

bn+1
2
c = bn

2
c or bn+1

2
c = bn

2
c+ 1.

In the first case (n even, bn+1
2
c = bn

2
c), we have 4T(bn+1

2
c) = 4T(bn

2
c).

In the second case (n odd) the (IH) can be applied to bn
2
c because bn

2
c ≤ n (this

is true always when n ≥ 2). Hence the (IH) tells us that 4T(bn
2
c) < 4T(bn+1

2
c).

We get 4T(bn
2
c) ≤ 4T(bn+1

2
c) in either case.

Also n2 < (n+1)2. Combining these two facts, we get that overall T(n) < T(n+1)
(ie, given the (IH), the claim holds for n also)

By induction, we have T(n) < T(n+ 1) for all n ∈ N.

(*) Note we really needed a recurrence with = and with explicit constants (no O,
no Θ) to prove the strictly increasing. This is because we substituted the T
on the right-hand side and the left-hand side of the claim T(j) < T(k).

(c) Now consider an arbitrary n ∈ N. Let p be the greatest integer such that 2p ≤ n
(note we are then guaranteed 2p > n/2).

By (a), T(2p) = (2p)2(1+ lg(2p)). By (b), we know that T(n) ≥ T(2p).
By above 2p > n/2. Hence we have

T(n) ≥ T(2p) = (2p)2(1+ lg(2p))

> (n/2)2(1+ lg(n/2))

= (n2/4)(lg(n)).

2



This gives Ω(n2 lg(n)) for n0 = 1 and c = 1/4.

3. Use Strassen’s algorithm to compute the matrix product(
1 3

5 7

)(
8 4

6 2

)
.

Just set up the P1 -P7 equations on the board, multiply them out, then evaluate
C11, C12, C21, C22. You’ll need to have lecture 4 (or the book) along with you.

4. Describe an algorithm for efficiently multiplying a (p×q) matrix with a (q×r) matrix,
where p, q, r are arbitrary positive integers. The running time should be Θ(nlg(7)),
where n = max{p, q, r}.

Answer:
Let A be the p× q matrix, and B be the q× r matrix. We round up the matrices to
become n× n matrices A ′, B ′, keeping A in the top lhs of A ′ (and similarly B in the
top lhs of B ′). All the entries outside the top-left p × q of A ′ are 0 and similarly for
entries outside the top-left q× r of B ′.

We call Strassen(A ′, B ′) and then extract the top-left hand p× r matrix.

For this algorithm it’s clear that the runtime is Θ(nlg(7)) (because that is the running
time of Strassen on n × n matrices, and because the “extra work” in mapping to-
and-from n× n matrices is only O(n2)).

Observation: A tangential issue wrt this algorithm is that for this general “rectangular”
case it is NOT clear that this “reduce to Strassen” algorithm is often a good strategy.
Suppose wlog that p = max{p, q, r}. Then the näıve matrix multiplication algorithm
is Θ(pqr). Our asymptotic running-time from “reduce to Strassen” is only better if
qr ≥ plg(7)−1 ∼ p1.8, which is not necessarily the case in the “rectangular” setting.

3


