Algorithms and Data Structures 2023 /24
Notes for Week 3

1. Work out (don’t bother proving) for each pair of expressions below, whether A is O(B),
Q(B), ©(B) (it could be none of these). Assume k > 1,€ > 0,c > 1 are all constants.

A B O Q C)
Ig“n n¢ X
nk ch X
ﬁ TLsinn
2" 22 X
nln m mlnn X X X
lg(n!) Ilg(n™) | X X X

The more tricky ones are the 3rd and the last.

The 3rd:

The answer is that \/n is neither O(n*™™) nor Q(n*™™). The reason for this is the
sin curve and the erratic behaviour of sin(n).

No matter how big ng is, there are always infinitely many n > ny so that sin(n)
approaches 1; also there are infinitely many n > ng so that sin(n) approaches —1.

The last:

It is actually the case that this pair of expressions are Theta of each other. This might
be surprising to the students because it is absolutely *not* true if we don’t take the
‘g’ of each side.

Use the formula n™?2 < n! < n™. Tell them you are using this - they will be using it
later in the course, but haven’t seen it yet.

2. For (c) you only need to show (a) and (b), then you get (c¢) automatically. So the main
thing to do is prove (a) and (b).
I'll do (b) (the lower bound Q), the more tricky one (tutors/students probably able to
do (a) themselves — though tutors might want to use it as a warm-up).

Proof of (b): Assume at least one coefficient a;, for i < d, is non-zero (otherwise the
proof is easy), and define C = (|ao|+|at|+...+|ag1]). Take c = aq/2, ng = 2[C/aq].

Then for all n > ngy, we have

d a1
E ant > aqmt— E la;n'
i=0 =0

d—1
> (ag/2)n*+Cn' — Z |ain’

i=0
> (ag/2mi+Cnt'—Cn?!' = (ag/2)n¢
> (agq/2)n* for any k < d.

Hence by definition of Q, we have p(n) = Q(n*) for all k < d.

A good way to “arrive at” the proof (rather than present it as a ‘fait accompli’) is to
consider what we need to show Q(n*) (for k < d). We need to find ¢ > 0,ny € N s0
that

S & amt > cenk for k < d.

& Yiiant—enk>0 fork<d.

and develop this downwards to see what setting of ¢,ng are sufficient to make this
possible.

. Let a and m be fixed and consider the complexity in n.

POWER-REM2: Get the number of arithmetic operations by counting.
TaMm) =14+ n—1)x0(1)

Thus POWER-REM2 has complexity ©(n).

POWER-REMS3: Get a recurrence for Ta(n). We have TAo(1) = 1 and To(n) <
Ta(n/2) 4+ 4, yielding O(logm). Similarly Ta(n) > Ta(n/2) + 2, yielding Q(logn).
Thus POWER-REMS3 has complexity ©(logn).

