
Algorithms and Data Structures 2023/24
Notes for Week 3

1. Work out (don’t bother proving) for each pair of expressions below, whether A is O(B),
Ω(B), Θ(B) (it could be none of these). Assume k ≥ 1, ε > 0, c > 1 are all constants.

A B O Ω Θ

lgk n nε X
nk cn X√
n nsinn

2n 2n/2 X
nlnm mlnn X X X
lg(n!) lg(nn) X X X

The more tricky ones are the 3rd and the last.

The 3rd:

The answer is that
√
n is neither O(nsin(n)) nor Ω(nsin(n)). The reason for this is the

sin curve and the erratic behaviour of sin(n).

No matter how big n0 is, there are always infinitely many n > n0 so that sin(n)
approaches 1; also there are infinitely many n > n0 so that sin(n) approaches −1.

The last:

It is actually the case that this pair of expressions are Theta of each other. This might
be surprising to the students because it is absolutely *not* true if we don’t take the
‘lg’ of each side.

Use the formula nn/2 ≤ n! ≤ nn. Tell them you are using this - they will be using it
later in the course, but haven’t seen it yet.

2. For (c) you only need to show (a) and (b), then you get (c) automatically. So the main
thing to do is prove (a) and (b).

I’ll do (b) (the lower bound Ω), the more tricky one (tutors/students probably able to
do (a) themselves – though tutors might want to use it as a warm-up).

Proof of (b): Assume at least one coefficient ai, for i < d, is non-zero (otherwise the
proof is easy), and define C = (|a0|+ |a1|+ . . .+ |ad−1|). Take c = ad/2, n0 = 2dC/ade.

1

Then for all n ≥ n0, we have

d∑
i=0

ain
i ≥ adn

d −

d−1∑
i=0

|ai|n
i

≥ (ad/2)n
d + Cnd−1 −

d−1∑
i=0

|ai|n
i

≥ (ad/2)n
d + Cnd−1 − Cnd−1 = (ad/2)n

d

≥ (ad/2)n
k for any k ≤ d.

Hence by definition of Ω, we have p(n) = Ω(nk) for all k ≤ d.

A good way to “arrive at” the proof (rather than present it as a ‘fait accompli’) is to
consider what we need to show Ω(nk) (for k ≤ d). We need to find c > 0, n0 ∈ N so
that ∑d

i=0 ain
i ≥ cnk for k ≤ d.⇔ ∑d

i=0 ain
i − cnk ≥ 0 for k ≤ d.

and develop this downwards to see what setting of c, n0 are sufficient to make this
possible.

3. Let a and m be fixed and consider the complexity in n.

POWER-REM2: Get the number of arithmetic operations by counting.

TA(n) = 1+ (n− 1) ∗O(1)

Thus POWER-REM2 has complexity Θ(n).

POWER-REM3: Get a recurrence for TA(n). We have TA(1) = 1 and TA(n) ≤
TA(n/2) + 4, yielding O(logn). Similarly TA(n) ≥ TA(n/2) + 2, yielding Ω(logn).
Thus POWER-REM3 has complexity Θ(logn).

2

