Quicksort

Divide-and-Conquer algorithm for sorting an array. It works as follows:

1. If the input array has less than two elements, nothing to do ...
Algorithms and Data Structures: Otherwise, do the following partitioning subroutine: Pick a
particular key called the pivot and divide the array into two
subarrays as follows:

Average-Case Analysis of Quicksort

< pivot piv. > pivot

2. Sort the two subarrays recursively.

ADS: lect 8 — slide 1 — ADS: lect 8 — slide 2 —

Quicksort Algorithm Partitioning

Algorithm QUICKSORT(A, p, r) Algorithm PARTITION(A, p, r)

1. if p<r then 1. pivot «+ Alr]

q « PARTITION(A, p, r) 2. i—p—1
QUICKSORT(A, p, g — 1) 3. forj«— ptor—1do
QUICKSORT(A,q + 1,r) 4 if A[j] < pivot then
5. I—i+1
6

7

8

mwn

exchange A[/], A[j]
exchange Ali 4+ 1], Alr]
return / +1

Same version as [CLRS]

ADS: lect 8 — slide 3 — ADS: lect 8 — slide 4 —



Analysis of Quicksort Analysis of PARTITION

» The size of an instance (A,p,r)isn=r—p—+ 1. » PARTITION(A, p, r) does exactly n — 1 comparisons for every
input of size n.

This is of course apart from any comparisons which may be done
C(n) inside the recursive calls to QUICKSORT.

» Basic operations for sorting are comparisons of keys. We let

be the worst-case number of key-comparisons performed by
QUICKSORT(A, p, r). We shall try to determine C(n) as precisely
as possible.

» |t is easy to verify that the worst-case running time T (n) of
QUICKSORT(A, p, r) is ©(C(n)) if a single comparison requires

time ©(1).
(i.e., for QUICKSORT, comparisons dominate the running time).
In any case,
T(n) =O(C(n) - cost per comparison).
ADS: lect 8 — slide 5 — ADS: lect 8 — slide 6 —
Worst-case Analysis of QUICKSORT Worst-Case Analysis (cont'd)

» Lower Bound: C(n) > %n(n—i— 1) = Q(n?).

Proof: Consider the situation where we are presented with an array
cln) {0 ifn<1 which is already sorted. Then on every iteration, we split into one

n) =

max;<<p (C(k—1)+ C(n—K)) + (n—1) ifn>2 array of length (n—1), and one of length 0.

» We get the following recurrence for C(n):

> Intuitively, worst-case seems to be k =1 or k = n, i.e., everything Cn) > Ch—1)+(n—1)
falls on one side of the partition. This happens, e.g., if the array is > Ch—2)+(n—2)+(n—1)
sorted. -
n—1
1
> = —=n(n—1).
> i 2n(n )

[y

1
» Upper Bound: C(n) < O(n?).
Bit harder (must consider all possible inputs). By induction on n,
using the recurrence. Case distinction whether k > n/2.
» Overall, we will show

ADS: lect 8 — slide 7 — ADS: lect 8 — slide 8 —



Best-Case Analysis

» B(n) = number of comparisons done by QUICKSORT in the best
case.

» Recurrence:

0 ifn<l1
B(n) = ) .
{mlnlgkgn (B(k—l)—l—B(n—k))+(n—1) if n>2

» Intuitively, the best case is if the array is always partitioned into two
parts of the same size. This would mean

B(n) =~ 2B(n/2) +©(n),

which implies B(n) = ©O(nlg(n)).

ADS: lect 8 — slide 9 —

Average Case Analysis in Detail
We shall prove that for all n > 1 (“sufficiently large”) we have

A(n) <2In(n)(n+1). (%)

ADS: lect 8 — slide 11 —

Average-Case Analysis

» A(n) = number of comparisons done by QUICKSORT on average

if all input arrays of size n are considered equally likely.
Intuition: The average case is closer to the best case than to the
worst case, because only repeatedly very unbalanced partitions
lead to the worst case.

v

» Recurrence:
0 if n<1
A(n) = - .
Zkzlﬁ(A(k—l)—}—A(n—k))+(n—1) if n>2
» Solution:

A(n) ~ 2nln(n).

ADS: lect 8 — slide 10 —

Average Case Analysis in Detail

We shall prove that for all n > 1 (“sufficiently large”) we have

A(n) <2In(n)(n+1). (%)

(Note (x) holds trivially for n = 1, because In(1) = 0)

ADS: lect 8 — slide 11 —



Average Case Analysis in Detail
We shall prove that for all n > 1 (“sufficiently large”) we have

A(n) <2In(n)(n+1). (*)

(Note (x) holds trivially for n = 1, because In(1) = 0)
So assume that n > 2. We have

S Lak—n+An—k)+(n—1)

1<k<n

A(n) =

ADS: lect 8 — slide 11 —

Average Case Analysis in Detail
We shall prove that for all n > 1 (“sufficiently large”) we have

A(n) <2In(n)(n+1). (%)

(Note (x) holds trivially for n = 1, because In(1) = 0)
So assume that n > 2. We have
1
An) = Y Z(Ak—1)+A(n—kK)+(n—1)

1<k<n

fZA (n—1).

Thus

ADS: lect 8 — slide 11 —

Average Case Analysis in Detail
We shall prove that for all n > 1 (“sufficiently large”) we have

A(n) <2In(n)(n+1). (%)

(Note (x) holds trivially for n = 1, because In(1) = 0)
So assume that n > 2. We have

S LAk—1)+An—K) +(n—1)

1<k<n

= fZA (n—1).

Aln) =

ADS: lect 8 — slide 11 —

Average Case Analysis in Detail
We shall prove that for all n > 1 (“sufficiently large”) we have

A(n) <2In(n)(n+1). (%)

(Note (x) holds trivially for n = 1, because In(1) = 0)
So assume that n > 2. We have

Am) = Y T (Atk—1)+ Aln— k) + (n— 1)

1<k<n

fZA (n—1).

Thus
nA(n) =23 A(k)+n(n—1). (%)

ADS: lect 8 — slide 11 —



Average Case Analysis in Detail (cont'd)

Applying (%) to (n—1) for n > 3, we obtain

(n—1)A(n—1) —2ZA (n—1)(n—2).

ADS: lect 8 — slide 12 —

Average Case Analysis in Detail (cont'd)

Applying (%) to (n— 1) for n > 3, we obtain
(n—1)A(n—1) _2ZA (n—1)(n—2).

Subtracting this equation from (*x) (when n > 3)
nA(n)—(n—1)A(n—-1)=2A(n—1)+n(n—1)—(n—1)(n—2),

thus
nA(n)=(n+1)A(n—1)+2n—2,

ADS: lect 8 — slide 12 —

Average Case Analysis in Detail (cont'd)

Applying (%%) to (n— 1) for n > 3, we obtain
(n—1)A(n—1) —2ZA (n—1)(n—2).

Subtracting this equation from (xx) (when n > 3)

nA(n)—(n—1)A(n—1) =2A(n—1)4+n(n—1)— (n—1)(n—2),

ADS: lect 8 — slide 12 —

Average Case Analysis in Detail (cont'd)

Applying (%%) to (n— 1) for n > 3, we obtain
(n—1)A(n—1) _2ZA (n—1)(n—2).

Subtracting this equation from (%) (when n > 3)
nA(n)—(n—1)A(n—1) =2A(n—1)+n(n—1)— (n—1)(n—2),

thus
nA(n)=(n+1)A(n—1)+2n—2,

and therefore

A(n) A(n—1) 2n—2 Aln—1) 2
n+1 n n(n+1) — n n

ADS: lect 8 — slide 12 —



Average Case Analysis in Detail (cont'd)

Applying (%) to (n—1) for n > 3, we obtain
n—2
(n—1)A(n—1)=2) A(k)+(n—1)(n—2).
k=0

Subtracting this equation from (*x) (when n > 3)
nA(n)—(n—1)A(n—1) =2A(n—1)+n(n—1)—(n—1)(n—2),

thus
nA(n)=(n+1)A(n—1)+2n—2,

and therefore

A(n) Aln—1) 2n—2 An—1) 2
n+1 n n(n+1) — n n

We now apply unfold-and-sum to this recurrence (stopping at n = 2):

A(n) < Aln—1) n 2
n+1 — n n

ADS: lect 8 — slide 12 —

Average Case Analysis in Detail (cont'd)

A(n) < A(n—2) n 2 2
n+1 — n—1 n n—1

IN
2
N/

+

N

M
| =

ADS: lect 8 — slide 13 —

Average Case Analysis in Detail (cont'd)

ADS: lect 8 — slide 13 —

Average Case Analysis in Detail (cont'd)

>

]

[y

IN

IN

x|

|
N

ADS: lect 8 — slide 13 —



Average Case Analysis in Detail (cont'd)

A(n) < A(n—2) n 2 2
n+1 — n—1 n n—1

IA
2
N

_|_
N
M
—-

It is easy to verify this result by induction. Thus

1
n—|—1_2;k: mezj

k=1

Multiplying by (n+ 1) completes the proof of (*).

ADS: lect 8 — slide 13 —

Median-of-Three Partitioning

Idea: Use the median of the first, middle, and last key as the pivot.

Algorithm M3PARTITION(A, p, r)

1. exchange Al(p+ r)/2], Alr — 1]

if Alp] > Alr — 1] then exchange Alp], Alr — 1]
if Alp] > Alr] then exchange Alp], Alr]

if Al[r — 1] > A[r] then exchange Alr — 1], Alr]
PARTITION(A,p+1,r —1)

ok W

Note that M3PARTITION(A, p, r) only requires 1 more comparison than
PARTITION(A, p, r)

ADS: lect 8 — slide 15 —

Improvements

» Use insertion sort for small arrays.

» lterative implementation.

Main Question
Is there a way to avoid the bad worst-case performance,
and in particular the bad performance on sorted (or almost
sorted) arrays?

Different strategies for choosing the pivot-element help (in practice).

ADS: lect 8 — slide 14 —

Median-of-Three Partitioning (cont'd)

Algorithm M3QUICKSORT(A, p, r)

1. if p<r then

2. q «— M3PARTITION(A, p, r)
3. M3QUICKSORT(A, p, g — 1)
4 M3QUICKSORT (A, g + 1, r)

In can be shown that the worst-case running time of M3QUICKSORT is
still ©(n?), but at least in the case of an almost sorted array (and in most
other cases that are relevant in practice) it is very efficient.

ADS: lect 8 — slide 16 —



Randomized Quicksort

Idea: Use key of random element as the pivot.

Algorithm RPARTITION(A, p, r)

1. k « RAaNDOM(p,r)
2. exchange Alk], Alr]
3. PARTITION(A, p, r)

> choose k randomly from {p,...,r}

Algorithm RANDOMIZED QUICKSORT(A, p, r)

1. if p<r then

2 q < RPARTITION(A, p, r)

3. RANDOMIZED QUICKSORT (A, p,q — 1)
4 RANDOMIZED QUICKSORT(A,q+ 1,r)

ADS: lect 8 — slide 17 —

Reading Assignment
Sections 7.2, 7.3, 7.4 of [CLRS] (edition 2 or 3)

Problems

1. Convince yourself that PARTITION works correctly by working a few
examples, or (better) try to prove that it works correctly.

2. In our proof of the Average-running time A(n), we can think of the
input as being some permutation of (1,...,n), and assume all

permutations are equally likely. Why does this explain the 1/n factor

in the recurrence on slide 107

3. Show that if the array is initially in decreasing order, then the
running time is ©(n?).
O(n?) from slide 8. Q(n?) involves considering PARTITION on a
decreasing array.

ADS: lect 8 — slide 19 —

Analysis of Randomized Quicksort

The running time of RANDOMIZED QQUICKSORT on an input of size n is
a random variable.

An analysis similar to the average case analysis of (QUICKSORT shows:

Theorem

For all inputs (A, p, r), the expected number of comparisons
performed during a run of RANDOMIZED QUICKSORT on input (A, p,r),
is at most 2In(n)(n+ 1), where n=r—p+ 1.

Corollary

Thus the expected running time of RANDOMIZED QUICKSORT on any
input of size n is ©(nlg(n)).

ADS: lect 8 — slide 18 —



