
Algorithms and Data Structures:
Average-Case Analysis of Quicksort

ADS: lect 8 – slide 1 –

Quicksort

Divide-and-Conquer algorithm for sorting an array. It works as follows:

1. If the input array has less than two elements, nothing to do . . .
Otherwise, do the following partitioning subroutine: Pick a
particular key called the pivot and divide the array into two
subarrays as follows:

≤ pivot piv. ≥ pivot

2. Sort the two subarrays recursively.

ADS: lect 8 – slide 2 –

Quicksort Algorithm

Algorithm Quicksort(A, p, r)

1. if p < r then
2. q ← Partition(A, p, r)
3. Quicksort(A, p, q − 1)
4. Quicksort(A, q + 1, r)

ADS: lect 8 – slide 3 –

Partitioning

Algorithm Partition(A, p, r)

1. pivot ← A[r ]
2. i ← p − 1
3. for j ← p to r − 1 do
4. if A[j ] ≤ pivot then
5. i ← i + 1
6. exchange A[i ], A[j ]
7. exchange A[i + 1], A[r ]
8. return i + 1

Same version as [CLRS]

ADS: lect 8 – slide 4 –



Analysis of Quicksort

I The size of an instance (A, p, r) is n = r − p + 1.

I Basic operations for sorting are comparisons of keys. We let

C (n)

be the worst-case number of key-comparisons performed by
Quicksort(A, p, r). We shall try to determine C (n) as precisely
as possible.

I It is easy to verify that the worst-case running time T (n) of
Quicksort(A, p, r) is Θ(C (n)) if a single comparison requires
time Θ(1).
(i.e., for Quicksort, comparisons dominate the running time).
In any case,

T (n) = Θ(C (n) · cost per comparison).

ADS: lect 8 – slide 5 –

Analysis of Partition

I Partition(A, p, r) does exactly n − 1 comparisons for every
input of size n.
This is of course apart from any comparisons which may be done
inside the recursive calls to Quicksort.

ADS: lect 8 – slide 6 –

Worst-case Analysis of Quicksort

I We get the following recurrence for C (n):

C (n) =

{
0 if n ≤ 1

max1≤k≤n

(
C (k − 1) + C (n − k)

)
+ (n − 1) if n ≥ 2

I Intuitively, worst-case seems to be k = 1 or k = n, i.e., everything
falls on one side of the partition. This happens, e.g., if the array is
sorted.

ADS: lect 8 – slide 7 –

Worst-Case Analysis (cont’d)

I Lower Bound: C (n) ≥ 1
2n(n + 1) = Ω(n2).

Proof: Consider the situation where we are presented with an array
which is already sorted. Then on every iteration, we split into one
array of length (n − 1), and one of length 0.

C (n) ≥ C (n − 1) + (n − 1)

≥ C (n − 2) + (n − 2) + (n − 1)
...

≥
n−1∑

i=1

i =
1

2
n(n − 1).

I Upper Bound: C (n) ≤ O(n2).
Bit harder (must consider all possible inputs). By induction on n,
using the recurrence. Case distinction whether k ≥ n/2.

I Overall, we will show
C (n) = Θ(n2).

ADS: lect 8 – slide 8 –



Best-Case Analysis

I B(n) = number of comparisons done by Quicksort in the best
case.

I Recurrence:

B(n) =

{
0 if n ≤ 1

min1≤k≤n

(
B(k − 1) + B(n − k)

)
+ (n − 1) if n ≥ 2

I Intuitively, the best case is if the array is always partitioned into two
parts of the same size. This would mean

B(n) ≈ 2B(n/2) +Θ(n),

which implies B(n) = Θ(n lg(n)).

ADS: lect 8 – slide 9 –

Average-Case Analysis

I A(n) = number of comparisons done by Quicksort on average
if all input arrays of size n are considered equally likely.

I Intuition: The average case is closer to the best case than to the
worst case, because only repeatedly very unbalanced partitions
lead to the worst case.

I Recurrence:

A(n) =

{
0 if n ≤ 1∑n

k=1
1
n

(
A(k − 1) + A(n − k)

)
+ (n − 1) if n ≥ 2

I Solution:
A(n) ≈ 2n ln(n).

ADS: lect 8 – slide 10 –

Average Case Analysis in Detail

We shall prove that for all n ≥ 1 (“sufficiently large”) we have

A(n) ≤ 2 ln(n)(n + 1). (?)

(Note (?) holds trivially for n = 1, because ln(1) = 0)
So assume that n ≥ 2. We have

A(n) =
∑

1≤k≤n

1

n

(
A(k − 1) + A(n − k)

)
+ (n − 1)

=
2

n

n−1∑

k=0

A(k) + (n − 1).

Thus

nA(n) = 2
n−1∑

k=0

A(k) + n(n − 1). (??)

ADS: lect 8 – slide 11 –

Average Case Analysis in Detail

We shall prove that for all n ≥ 1 (“sufficiently large”) we have

A(n) ≤ 2 ln(n)(n + 1). (?)

(Note (?) holds trivially for n = 1, because ln(1) = 0)

So assume that n ≥ 2. We have

A(n) =
∑

1≤k≤n

1

n

(
A(k − 1) + A(n − k)

)
+ (n − 1)

=
2

n

n−1∑

k=0

A(k) + (n − 1).

Thus

nA(n) = 2
n−1∑

k=0

A(k) + n(n − 1). (??)

ADS: lect 8 – slide 11 –



Average Case Analysis in Detail

We shall prove that for all n ≥ 1 (“sufficiently large”) we have

A(n) ≤ 2 ln(n)(n + 1). (?)

(Note (?) holds trivially for n = 1, because ln(1) = 0)
So assume that n ≥ 2. We have

A(n) =
∑

1≤k≤n

1

n

(
A(k − 1) + A(n − k)

)
+ (n − 1)

=
2

n

n−1∑

k=0

A(k) + (n − 1).

Thus

nA(n) = 2
n−1∑

k=0

A(k) + n(n − 1). (??)

ADS: lect 8 – slide 11 –

Average Case Analysis in Detail

We shall prove that for all n ≥ 1 (“sufficiently large”) we have

A(n) ≤ 2 ln(n)(n + 1). (?)

(Note (?) holds trivially for n = 1, because ln(1) = 0)
So assume that n ≥ 2. We have

A(n) =
∑

1≤k≤n

1

n

(
A(k − 1) + A(n − k)

)
+ (n − 1)

=
2

n

n−1∑

k=0

A(k) + (n − 1).

Thus

nA(n) = 2
n−1∑

k=0

A(k) + n(n − 1). (??)

ADS: lect 8 – slide 11 –

Average Case Analysis in Detail

We shall prove that for all n ≥ 1 (“sufficiently large”) we have

A(n) ≤ 2 ln(n)(n + 1). (?)

(Note (?) holds trivially for n = 1, because ln(1) = 0)
So assume that n ≥ 2. We have

A(n) =
∑

1≤k≤n

1

n

(
A(k − 1) + A(n − k)

)
+ (n − 1)

=
2

n

n−1∑

k=0

A(k) + (n − 1).

Thus

nA(n) = 2
n−1∑

k=0

A(k) + n(n − 1). (??)

ADS: lect 8 – slide 11 –

Average Case Analysis in Detail

We shall prove that for all n ≥ 1 (“sufficiently large”) we have

A(n) ≤ 2 ln(n)(n + 1). (?)

(Note (?) holds trivially for n = 1, because ln(1) = 0)
So assume that n ≥ 2. We have

A(n) =
∑

1≤k≤n

1

n

(
A(k − 1) + A(n − k)

)
+ (n − 1)

=
2

n

n−1∑

k=0

A(k) + (n − 1).

Thus

nA(n) = 2
n−1∑

k=0

A(k) + n(n − 1). (??)

ADS: lect 8 – slide 11 –



Average Case Analysis in Detail (cont’d)

Applying (??) to (n − 1) for n ≥ 3, we obtain

(n − 1)A(n − 1) = 2
n−2∑

k=0

A(k) + (n − 1)(n − 2).

Subtracting this equation from (??) (when n ≥ 3)

nA(n) − (n − 1)A(n − 1) = 2A(n − 1) + n(n − 1) − (n − 1)(n − 2),

thus
nA(n) = (n + 1)A(n − 1) + 2n − 2,

and therefore
A(n)

n + 1
=

A(n − 1)

n
+

2n − 2

n(n + 1)
≤ A(n − 1)

n
+

2

n

We now apply unfold-and-sum to this recurrence (stopping at n = 2):

A(n)

n + 1
≤ A(n − 1)

n
+

2

n

...

ADS: lect 8 – slide 12 –

Average Case Analysis in Detail (cont’d)

Applying (??) to (n − 1) for n ≥ 3, we obtain

(n − 1)A(n − 1) = 2
n−2∑

k=0

A(k) + (n − 1)(n − 2).

Subtracting this equation from (??) (when n ≥ 3)

nA(n) − (n − 1)A(n − 1) = 2A(n − 1) + n(n − 1) − (n − 1)(n − 2),

thus
nA(n) = (n + 1)A(n − 1) + 2n − 2,

and therefore
A(n)

n + 1
=

A(n − 1)

n
+

2n − 2

n(n + 1)
≤ A(n − 1)

n
+

2

n

We now apply unfold-and-sum to this recurrence (stopping at n = 2):

A(n)

n + 1
≤ A(n − 1)

n
+

2

n

...

ADS: lect 8 – slide 12 –

Average Case Analysis in Detail (cont’d)

Applying (??) to (n − 1) for n ≥ 3, we obtain

(n − 1)A(n − 1) = 2
n−2∑

k=0

A(k) + (n − 1)(n − 2).

Subtracting this equation from (??) (when n ≥ 3)

nA(n) − (n − 1)A(n − 1) = 2A(n − 1) + n(n − 1) − (n − 1)(n − 2),

thus
nA(n) = (n + 1)A(n − 1) + 2n − 2,

and therefore
A(n)

n + 1
=

A(n − 1)

n
+

2n − 2

n(n + 1)
≤ A(n − 1)

n
+

2

n

We now apply unfold-and-sum to this recurrence (stopping at n = 2):

A(n)

n + 1
≤ A(n − 1)

n
+

2

n

...

ADS: lect 8 – slide 12 –

Average Case Analysis in Detail (cont’d)

Applying (??) to (n − 1) for n ≥ 3, we obtain

(n − 1)A(n − 1) = 2
n−2∑

k=0

A(k) + (n − 1)(n − 2).

Subtracting this equation from (??) (when n ≥ 3)

nA(n) − (n − 1)A(n − 1) = 2A(n − 1) + n(n − 1) − (n − 1)(n − 2),

thus
nA(n) = (n + 1)A(n − 1) + 2n − 2,

and therefore
A(n)

n + 1
=

A(n − 1)

n
+

2n − 2

n(n + 1)
≤ A(n − 1)

n
+

2

n

We now apply unfold-and-sum to this recurrence (stopping at n = 2):

A(n)

n + 1
≤ A(n − 1)

n
+

2

n

...

ADS: lect 8 – slide 12 –



Average Case Analysis in Detail (cont’d)

Applying (??) to (n − 1) for n ≥ 3, we obtain

(n − 1)A(n − 1) = 2
n−2∑

k=0

A(k) + (n − 1)(n − 2).

Subtracting this equation from (??) (when n ≥ 3)

nA(n) − (n − 1)A(n − 1) = 2A(n − 1) + n(n − 1) − (n − 1)(n − 2),

thus
nA(n) = (n + 1)A(n − 1) + 2n − 2,

and therefore
A(n)

n + 1
=

A(n − 1)

n
+

2n − 2

n(n + 1)
≤ A(n − 1)

n
+

2

n

We now apply unfold-and-sum to this recurrence (stopping at n = 2):

A(n)

n + 1
≤ A(n − 1)

n
+

2

n

...

ADS: lect 8 – slide 12 –

Average Case Analysis in Detail (cont’d)

A(n)

n + 1
≤ A(n − 2)

n − 1
+

2

n
+

2

n − 1

...

≤ A(2)

3
+ 2

n∑

k=3

1

k

=
3

3
+ 2

n∑

k=3

1

k
= 2

n∑

k=2

1

k
.

It is easy to verify this result by induction. Thus

A(n)

n + 1
≤ 2

n∑

k=2

1

k
= 2

n−1∑

k=1

1

k + 1
≤ 2

∫ n

1

1

x
= 2 ln(n).

Multiplying by (n + 1) completes the proof of (?).

ADS: lect 8 – slide 13 –

Average Case Analysis in Detail (cont’d)

A(n)

n + 1
≤ A(n − 2)

n − 1
+

2

n
+

2

n − 1

...

≤ A(2)

3
+ 2

n∑

k=3

1

k

=
3

3
+ 2

n∑

k=3

1

k
= 2

n∑

k=2

1

k
.

It is easy to verify this result by induction. Thus

A(n)

n + 1
≤ 2

n∑

k=2

1

k
= 2

n−1∑

k=1

1

k + 1
≤ 2

∫ n

1

1

x
= 2 ln(n).

Multiplying by (n + 1) completes the proof of (?).

ADS: lect 8 – slide 13 –

Average Case Analysis in Detail (cont’d)

A(n)

n + 1
≤ A(n − 2)

n − 1
+

2

n
+

2

n − 1

...

≤ A(2)

3
+ 2

n∑

k=3

1

k

=
3

3
+ 2

n∑

k=3

1

k
= 2

n∑

k=2

1

k
.

It is easy to verify this result by induction. Thus

A(n)

n + 1
≤ 2

n∑

k=2

1

k
= 2

n−1∑

k=1

1

k + 1
≤ 2

∫ n

1

1

x
= 2 ln(n).

Multiplying by (n + 1) completes the proof of (?).

ADS: lect 8 – slide 13 –



Average Case Analysis in Detail (cont’d)

A(n)

n + 1
≤ A(n − 2)

n − 1
+

2

n
+

2

n − 1

...

≤ A(2)

3
+ 2

n∑

k=3

1

k

=
3

3
+ 2

n∑

k=3

1

k
= 2

n∑

k=2

1

k
.

It is easy to verify this result by induction. Thus

A(n)

n + 1
≤ 2

n∑

k=2

1

k
= 2

n−1∑

k=1

1

k + 1
≤ 2

∫ n

1

1

x
= 2 ln(n).

Multiplying by (n + 1) completes the proof of (?).

ADS: lect 8 – slide 13 –

Improvements

I Use insertion sort for small arrays.

I Iterative implementation.

Main Question
Is there a way to avoid the bad worst-case performance,
and in particular the bad performance on sorted (or almost
sorted) arrays?

Different strategies for choosing the pivot-element help (in practice).

ADS: lect 8 – slide 14 –

Median-of-Three Partitioning

Idea: Use the median of the first, middle, and last key as the pivot.

Algorithm M3Partition(A, p, r)

1. exchange A[(p + r)/2], A[r − 1]
2. if A[p] > A[r − 1] then exchange A[p], A[r − 1]
3. if A[p] > A[r ] then exchange A[p], A[r ]
4. if A[r − 1] > A[r ] then exchange A[r − 1], A[r ]
5. Partition(A, p + 1, r − 1)

Note that M3Partition(A, p, r) only requires 1 more comparison than
Partition(A, p, r)

ADS: lect 8 – slide 15 –

Median-of-Three Partitioning (cont’d)

Algorithm M3Quicksort(A, p, r)

1. if p < r then
2. q ←M3Partition(A, p, r)
3. M3Quicksort(A, p, q − 1)
4. M3Quicksort(A, q + 1, r)

In can be shown that the worst-case running time of M3Quicksort is
still Θ(n2), but at least in the case of an almost sorted array (and in most
other cases that are relevant in practice) it is very efficient.

ADS: lect 8 – slide 16 –



Randomized Quicksort

Idea: Use key of random element as the pivot.

Algorithm RPartition(A, p, r)

1. k ← Random(p, r) B choose k randomly from {p, . . . , r }
2. exchange A[k ], A[r ]
3. Partition(A, p, r)

Algorithm Randomized Quicksort(A, p, r)

1. if p < r then
2. q ← RPartition(A, p, r)
3. Randomized Quicksort(A, p, q − 1)
4. Randomized Quicksort(A, q + 1, r)

ADS: lect 8 – slide 17 –

Analysis of Randomized Quicksort

The running time of Randomized Quicksort on an input of size n is
a random variable.

An analysis similar to the average case analysis of Quicksort shows:

Theorem
For all inputs (A, p, r), the expected number of comparisons
performed during a run of Randomized Quicksort on input (A, p, r),
is at most 2 ln(n)(n + 1), where n = r − p + 1.

Corollary

Thus the expected running time of Randomized Quicksort on any
input of size n is Θ(n lg(n)).

ADS: lect 8 – slide 18 –

Reading Assignment

Sections 7.2, 7.3, 7.4 of [CLRS] (edition 2 or 3)

Problems

1. Convince yourself that Partition works correctly by working a few
examples, or (better) try to prove that it works correctly.

2. In our proof of the Average-running time A(n), we can think of the
input as being some permutation of (1, . . . , n), and assume all
permutations are equally likely. Why does this explain the 1/n factor
in the recurrence on slide 10?

3. Show that if the array is initially in decreasing order, then the
running time is Θ(n2).
O(n2) from slide 8. Ω(n2) involves considering Partition on a
decreasing array.

ADS: lect 8 – slide 19 –


